Modelling potential impact of climate change and uncertainty on streamflow projections: a case study

This study presents climate change impacts on streamflow for the Subarnarekha basin at two gauging locations, Jamshedpur and Ghatshila, using the Soil and Water Assessment Tool (SWAT) model driven by an ensemble of four regional climate models (RCMs). The basin's hydrological responses to clima...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Srishti Gaur, Arnab Bandyopadhyay, Rajendra Singh
Formato: article
Lenguaje:EN
Publicado: IWA Publishing 2021
Materias:
rcm
Acceso en línea:https://doaj.org/article/0d475a8292734bdd8c4db5a7113975b8
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:This study presents climate change impacts on streamflow for the Subarnarekha basin at two gauging locations, Jamshedpur and Ghatshila, using the Soil and Water Assessment Tool (SWAT) model driven by an ensemble of four regional climate models (RCMs). The basin's hydrological responses to climate forcing in the projected period are analysed under two representative concentration pathways (RCPs). Trends in the projected period relative to the reference period are determined for medium, high and low flows. Flood characteristics are estimated using the threshold level approach. The analysis of variance technique (ANOVA) is used to segregate the contribution from RCMs, RCPs, and internal variability (IV) to the total uncertainty in streamflow projections. Results show a robust positive trend for streamflows. Flood volumes may increase by 11.7% in RCP4.5 (2006–2030), 76.4% in RCP4.5 (2025–2049), 20.3% in RCP8.5 (2006–2030), and 342.4% in RCP8.5 (2025–2049), respectively, for Jamshedpur. For Ghatshila, increment in flow volume is estimated as 15.7% in RCP4.5 (2006–2025), 24.2% in RCP4.5 (2025–2049), 35.9% in RCP8.5 (2006–2030), and 224.6% in RCP8.5 (2025–2049), respectively. Segregation results suggests that the uncertainty in climate prediction is dominated by RCMs followed by IV. These findings will serve as an early warning for the alarming extreme weather events India is currently facing.