Assessment of COVID-19 effects on satellite-observed aerosol loading over China with machine learning
Aerosols are a critical component of the climate system and a risk to human health. Here, the lockdown response to the coronavirus outbreak is used to analyse effects of dramatic reduction in anthropogenic aerosol sources on satellite-retrieved aerosol optical depth (AOD). A machine learning model i...
Guardado en:
Autores principales: | Hendrik Andersen, Jan Cermak, Roland Stirnberg, Julia Fuchs, Miae Kim, Eva Pauli |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Taylor & Francis Group
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0d500a20a2ef4a71a25048e30886d417 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Assessment of Aerosol Mechanisms and Aerosol Meteorology Feedback over an Urban Airshed in India Using a Chemical Transport Model
por: Medhavi Gupta, et al.
Publicado: (2021) -
Effect of Humidity on the Reactive Uptake of Ammonia and Dimethylamine by Nitrogen-Containing Secondary Organic Aerosol
por: Natalie R. Smith, et al.
Publicado: (2021) -
Gas-surface interactions modelling influence on satellite aerodynamics and thermosphere mass density
por: March Günther, et al.
Publicado: (2021) -
Abundance of NO<sub>3</sub> Derived Organo-Nitrates and Their Importance in the Atmosphere
por: Amy Foulds, et al.
Publicado: (2021) -
Atmosphere
Publicado: (2011)