A versatile computational algorithm for time-series data analysis and machine-learning models

Abstract Here we introduce Local Topological Recurrence Analysis (LoTRA), a simple computational approach for analyzing time-series data. Its versatility is elucidated using simulated data, Parkinsonian gait, and in vivo brain dynamics. We also show that this algorithm can be used to build a remarka...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Taylor Chomiak, Neilen P. Rasiah, Leonardo A. Molina, Bin Hu, Jaideep S. Bains, Tamás Füzesi
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/0d501efbd1784cc1a4ba7c35db5bc8dd
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Here we introduce Local Topological Recurrence Analysis (LoTRA), a simple computational approach for analyzing time-series data. Its versatility is elucidated using simulated data, Parkinsonian gait, and in vivo brain dynamics. We also show that this algorithm can be used to build a remarkably simple machine-learning model capable of outperforming deep-learning models in detecting Parkinson’s disease from a single digital handwriting test.