A versatile computational algorithm for time-series data analysis and machine-learning models

Abstract Here we introduce Local Topological Recurrence Analysis (LoTRA), a simple computational approach for analyzing time-series data. Its versatility is elucidated using simulated data, Parkinsonian gait, and in vivo brain dynamics. We also show that this algorithm can be used to build a remarka...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Taylor Chomiak, Neilen P. Rasiah, Leonardo A. Molina, Bin Hu, Jaideep S. Bains, Tamás Füzesi
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/0d501efbd1784cc1a4ba7c35db5bc8dd
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0d501efbd1784cc1a4ba7c35db5bc8dd
record_format dspace
spelling oai:doaj.org-article:0d501efbd1784cc1a4ba7c35db5bc8dd2021-11-14T12:27:00ZA versatile computational algorithm for time-series data analysis and machine-learning models10.1038/s41531-021-00240-42373-8057https://doaj.org/article/0d501efbd1784cc1a4ba7c35db5bc8dd2021-11-01T00:00:00Zhttps://doi.org/10.1038/s41531-021-00240-4https://doaj.org/toc/2373-8057Abstract Here we introduce Local Topological Recurrence Analysis (LoTRA), a simple computational approach for analyzing time-series data. Its versatility is elucidated using simulated data, Parkinsonian gait, and in vivo brain dynamics. We also show that this algorithm can be used to build a remarkably simple machine-learning model capable of outperforming deep-learning models in detecting Parkinson’s disease from a single digital handwriting test.Taylor ChomiakNeilen P. RasiahLeonardo A. MolinaBin HuJaideep S. BainsTamás FüzesiNature PortfolioarticleNeurology. Diseases of the nervous systemRC346-429ENnpj Parkinson's Disease, Vol 7, Iss 1, Pp 1-6 (2021)
institution DOAJ
collection DOAJ
language EN
topic Neurology. Diseases of the nervous system
RC346-429
spellingShingle Neurology. Diseases of the nervous system
RC346-429
Taylor Chomiak
Neilen P. Rasiah
Leonardo A. Molina
Bin Hu
Jaideep S. Bains
Tamás Füzesi
A versatile computational algorithm for time-series data analysis and machine-learning models
description Abstract Here we introduce Local Topological Recurrence Analysis (LoTRA), a simple computational approach for analyzing time-series data. Its versatility is elucidated using simulated data, Parkinsonian gait, and in vivo brain dynamics. We also show that this algorithm can be used to build a remarkably simple machine-learning model capable of outperforming deep-learning models in detecting Parkinson’s disease from a single digital handwriting test.
format article
author Taylor Chomiak
Neilen P. Rasiah
Leonardo A. Molina
Bin Hu
Jaideep S. Bains
Tamás Füzesi
author_facet Taylor Chomiak
Neilen P. Rasiah
Leonardo A. Molina
Bin Hu
Jaideep S. Bains
Tamás Füzesi
author_sort Taylor Chomiak
title A versatile computational algorithm for time-series data analysis and machine-learning models
title_short A versatile computational algorithm for time-series data analysis and machine-learning models
title_full A versatile computational algorithm for time-series data analysis and machine-learning models
title_fullStr A versatile computational algorithm for time-series data analysis and machine-learning models
title_full_unstemmed A versatile computational algorithm for time-series data analysis and machine-learning models
title_sort versatile computational algorithm for time-series data analysis and machine-learning models
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/0d501efbd1784cc1a4ba7c35db5bc8dd
work_keys_str_mv AT taylorchomiak aversatilecomputationalalgorithmfortimeseriesdataanalysisandmachinelearningmodels
AT neilenprasiah aversatilecomputationalalgorithmfortimeseriesdataanalysisandmachinelearningmodels
AT leonardoamolina aversatilecomputationalalgorithmfortimeseriesdataanalysisandmachinelearningmodels
AT binhu aversatilecomputationalalgorithmfortimeseriesdataanalysisandmachinelearningmodels
AT jaideepsbains aversatilecomputationalalgorithmfortimeseriesdataanalysisandmachinelearningmodels
AT tamasfuzesi aversatilecomputationalalgorithmfortimeseriesdataanalysisandmachinelearningmodels
AT taylorchomiak versatilecomputationalalgorithmfortimeseriesdataanalysisandmachinelearningmodels
AT neilenprasiah versatilecomputationalalgorithmfortimeseriesdataanalysisandmachinelearningmodels
AT leonardoamolina versatilecomputationalalgorithmfortimeseriesdataanalysisandmachinelearningmodels
AT binhu versatilecomputationalalgorithmfortimeseriesdataanalysisandmachinelearningmodels
AT jaideepsbains versatilecomputationalalgorithmfortimeseriesdataanalysisandmachinelearningmodels
AT tamasfuzesi versatilecomputationalalgorithmfortimeseriesdataanalysisandmachinelearningmodels
_version_ 1718429211096514560