A versatile computational algorithm for time-series data analysis and machine-learning models
Abstract Here we introduce Local Topological Recurrence Analysis (LoTRA), a simple computational approach for analyzing time-series data. Its versatility is elucidated using simulated data, Parkinsonian gait, and in vivo brain dynamics. We also show that this algorithm can be used to build a remarka...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0d501efbd1784cc1a4ba7c35db5bc8dd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:0d501efbd1784cc1a4ba7c35db5bc8dd |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:0d501efbd1784cc1a4ba7c35db5bc8dd2021-11-14T12:27:00ZA versatile computational algorithm for time-series data analysis and machine-learning models10.1038/s41531-021-00240-42373-8057https://doaj.org/article/0d501efbd1784cc1a4ba7c35db5bc8dd2021-11-01T00:00:00Zhttps://doi.org/10.1038/s41531-021-00240-4https://doaj.org/toc/2373-8057Abstract Here we introduce Local Topological Recurrence Analysis (LoTRA), a simple computational approach for analyzing time-series data. Its versatility is elucidated using simulated data, Parkinsonian gait, and in vivo brain dynamics. We also show that this algorithm can be used to build a remarkably simple machine-learning model capable of outperforming deep-learning models in detecting Parkinson’s disease from a single digital handwriting test.Taylor ChomiakNeilen P. RasiahLeonardo A. MolinaBin HuJaideep S. BainsTamás FüzesiNature PortfolioarticleNeurology. Diseases of the nervous systemRC346-429ENnpj Parkinson's Disease, Vol 7, Iss 1, Pp 1-6 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Neurology. Diseases of the nervous system RC346-429 |
spellingShingle |
Neurology. Diseases of the nervous system RC346-429 Taylor Chomiak Neilen P. Rasiah Leonardo A. Molina Bin Hu Jaideep S. Bains Tamás Füzesi A versatile computational algorithm for time-series data analysis and machine-learning models |
description |
Abstract Here we introduce Local Topological Recurrence Analysis (LoTRA), a simple computational approach for analyzing time-series data. Its versatility is elucidated using simulated data, Parkinsonian gait, and in vivo brain dynamics. We also show that this algorithm can be used to build a remarkably simple machine-learning model capable of outperforming deep-learning models in detecting Parkinson’s disease from a single digital handwriting test. |
format |
article |
author |
Taylor Chomiak Neilen P. Rasiah Leonardo A. Molina Bin Hu Jaideep S. Bains Tamás Füzesi |
author_facet |
Taylor Chomiak Neilen P. Rasiah Leonardo A. Molina Bin Hu Jaideep S. Bains Tamás Füzesi |
author_sort |
Taylor Chomiak |
title |
A versatile computational algorithm for time-series data analysis and machine-learning models |
title_short |
A versatile computational algorithm for time-series data analysis and machine-learning models |
title_full |
A versatile computational algorithm for time-series data analysis and machine-learning models |
title_fullStr |
A versatile computational algorithm for time-series data analysis and machine-learning models |
title_full_unstemmed |
A versatile computational algorithm for time-series data analysis and machine-learning models |
title_sort |
versatile computational algorithm for time-series data analysis and machine-learning models |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/0d501efbd1784cc1a4ba7c35db5bc8dd |
work_keys_str_mv |
AT taylorchomiak aversatilecomputationalalgorithmfortimeseriesdataanalysisandmachinelearningmodels AT neilenprasiah aversatilecomputationalalgorithmfortimeseriesdataanalysisandmachinelearningmodels AT leonardoamolina aversatilecomputationalalgorithmfortimeseriesdataanalysisandmachinelearningmodels AT binhu aversatilecomputationalalgorithmfortimeseriesdataanalysisandmachinelearningmodels AT jaideepsbains aversatilecomputationalalgorithmfortimeseriesdataanalysisandmachinelearningmodels AT tamasfuzesi aversatilecomputationalalgorithmfortimeseriesdataanalysisandmachinelearningmodels AT taylorchomiak versatilecomputationalalgorithmfortimeseriesdataanalysisandmachinelearningmodels AT neilenprasiah versatilecomputationalalgorithmfortimeseriesdataanalysisandmachinelearningmodels AT leonardoamolina versatilecomputationalalgorithmfortimeseriesdataanalysisandmachinelearningmodels AT binhu versatilecomputationalalgorithmfortimeseriesdataanalysisandmachinelearningmodels AT jaideepsbains versatilecomputationalalgorithmfortimeseriesdataanalysisandmachinelearningmodels AT tamasfuzesi versatilecomputationalalgorithmfortimeseriesdataanalysisandmachinelearningmodels |
_version_ |
1718429211096514560 |