A versatile computational algorithm for time-series data analysis and machine-learning models
Abstract Here we introduce Local Topological Recurrence Analysis (LoTRA), a simple computational approach for analyzing time-series data. Its versatility is elucidated using simulated data, Parkinsonian gait, and in vivo brain dynamics. We also show that this algorithm can be used to build a remarka...
Guardado en:
Autores principales: | Taylor Chomiak, Neilen P. Rasiah, Leonardo A. Molina, Bin Hu, Jaideep S. Bains, Tamás Füzesi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0d501efbd1784cc1a4ba7c35db5bc8dd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Hypothalamic CRH neurons orchestrate complex behaviours after stress
por: Tamás Füzesi, et al.
Publicado: (2016) -
Rainfall prediction: A comparative analysis of modern machine learning algorithms for time-series forecasting
por: Ari Yair Barrera-Animas, et al.
Publicado: (2022) -
A HYBRID LEAST SQUARES SUPPORT VECTOR MACHINE WITH BAT AND CUCKOO SEARCH ALGORITHMS FOR TIME SERIES FORECASTING
por: Athraa Jasim Mohammed, et al.
Publicado: (2020) -
Comparison and Explanation of Forecasting Algorithms for Energy Time Series
por: Yuyi Zhang, et al.
Publicado: (2021) -
Detection of cognitive impairment using a machine-learning algorithm [Corrigendum]
por: Youn YC, et al.
Publicado: (2019)