Development of a Machine Learning Classifier for Brain Tumors Diagnosis Based on DNA Methylation Profile
Background: More than 150 types of brain tumors have been documented. Accurate diagnosis is important for making appropriate therapeutic decisions in treating the diseases. The goal of this study is to develop a DNA methylation profile-based classifier to accurately identify various kinds of brain t...
Guardado en:
Autores principales: | Yuxing Chen, Yixin Yan, Moping Xu, Wen Chen, Jinyu Lin, Yan Zhao, Junze Wu, Xianlong Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0d848c47df394e3783d6250f30cce2ca |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Predicting environmentally responsive transgenerational differential DNA methylated regions (epimutations) in the genome using a hybrid deep-machine learning approach
por: Pegah Mavaie, et al.
Publicado: (2021) -
Multitask Interactive Attention Learning Model Based on Hand Images for Assisting Chinese Medicine in Predicting Myocardial Infarction
por: Qida Wang, et al.
Publicado: (2021) -
iCOVID: interpretable deep learning framework for early recovery-time prediction of COVID-19 patients
por: Jun Wang, et al.
Publicado: (2021) -
Homeostasis as a proportional–integral control system
por: Lennaert van Veen, et al.
Publicado: (2020) -
The Effects of Elgucare on Degenerated Intervertebral Disc-Induced Low Back Pain and Disc Regeneration: A Clinical Trial
por: Wen-Cheng Lo, et al.
Publicado: (2021)