Kynurenic acid is a potential overlapped biomarker between diagnosis and treatment response for depression from metabolome analysis
Abstract Since optimal treatment at an early stage leads to remission of symptoms and recovery of function, putative biomarkers leading to early diagnosis and prediction of therapeutic responses are desired. The current study aimed to use a metabolomic approach to extract metabolites involved in bot...
Guardado en:
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0d8b0e005edb4e1fa3026c8f98f91b71 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Since optimal treatment at an early stage leads to remission of symptoms and recovery of function, putative biomarkers leading to early diagnosis and prediction of therapeutic responses are desired. The current study aimed to use a metabolomic approach to extract metabolites involved in both the diagnosis of major depressive disorder (MDD) and the prediction of therapeutic response for escitalopram. We compared plasma metabolites of MDD patients (n = 88) with those in healthy participants (n = 88) and found significant differences in the concentrations of 20 metabolites. We measured the Hamilton Rating Scale for Depression (HRSD) on 62 patients who completed approximately six-week treatment with escitalopram before and after treatment and found that kynurenic acid and kynurenine were significantly and negatively associated with HRSD reduction. Only one metabolite, kynurenic acid, was detected among 73 metabolites for overlapped biomarkers. Kynurenic acid was lower in MDD, and lower levels showed a better therapeutic response to escitalopram. Kynurenic acid is a metabolite in the kynurenine pathway that has been widely accepted as being a major mechanism in MDD. Overlapping biomarkers that facilitate diagnosis and prediction of the treatment response may help to improve disease classification and reduce the exposure of patients to less effective treatments in MDD. |
---|