Physicochemical and biological properties of a novel injectable polyurethane system for root canal filling

Jian Wang,1 Yi Zuo,1 Minghui Zhao,1 Jiaxing Jiang,1 Yi Man,2 Jun Wu,3 Yunjiu Hu,3 Changlei Liu,4 Yubao Li,1 Jidong Li11Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, Sichuan, People’s Republic of China; 2College of Stomatology, Sichuan U...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Wang J, Zuo Y, Zhao MH, Jiang JX, Man Y, Wu J, Hu YJ, Liu CL, Li YB, Li JD
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2015
Materias:
Acceso en línea:https://doaj.org/article/0d8b64495df94deb8f82118f60b289fd
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Jian Wang,1 Yi Zuo,1 Minghui Zhao,1 Jiaxing Jiang,1 Yi Man,2 Jun Wu,3 Yunjiu Hu,3 Changlei Liu,4 Yubao Li,1 Jidong Li11Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, Sichuan, People’s Republic of China; 2College of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China; 3Department of Orthopedics, Chongqing Medical University, Chongqing, People’s Republic of China; 4College of Chemistry, Sichuan University, Chengdu, Sichuan, People’s Republic of ChinaAbstract: A root canal sealer with antibacterial activity can be efficacious in preventing reinfection that results from residual microorganisms and/or the leakage of microorganisms. In the present study, a series of injectable, self-curing polyurethane (PU)-based antibacterial sealers with different concentrations of silver phosphate (Ag3PO4) were fabricated. Subsequently, their physicochemical properties, antibacterial abilities, and preliminary cytocompatibilities were evaluated. The results indicated that the fabricated PU-based sealers can achieve a high conversion rate in a short amount of time. More than 95% of the isocyanate group of PU sealers with 3 wt% (PU3) and 5 wt% (PU5) concentrations of Ag3PO4 were included in the curing reaction after 7 hours. With the exception of those for film thickness for PU5, the results of setting time, film thickness, and solubility were able to meet the requirements of the International Organization for Standardization. The antibacterial tests showed that PU3 and PU5 exhibit stronger antimicrobial effects than that achieved with 1 wt% Ag3PO4 (PU1) and AH Plus (positive control) against Streptococcus mutans. The cytocompatibility evaluation revealed that the PU1 and PU3 sealers possess good cytocompatibility and low cytotoxicity. These results demonstrate that the PU3 sealer offers good physicochemical and antimicrobial properties along with cytocompatibility, which may hold great application potential in the field of root canal fillings.Keywords: root canal sealer, polyurethane, silver phosphate, antibacterial properties, direct contact test