Attention Enhanced U-Net for Building Extraction from Farmland Based on Google and WorldView-2 Remote Sensing Images
High-resolution remote sensing images contain abundant building information and provide an important data source for extracting buildings, which is of great significance to farmland preservation. However, the types of ground features in farmland are complex, the buildings are scattered and may be ob...
Guardado en:
Autores principales: | Chuangnong Li, Lin Fu, Qing Zhu, Jun Zhu, Zheng Fang, Yakun Xie, Yukun Guo, Yuhang Gong |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0d9133170f2d4f958de925f6988ec018 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Evaluating the Farmland Use Intensity and Its Patterns in a Farming—Pastoral Ecotone of Northern China
por: Xin Chen, et al.
Publicado: (2021) -
Road crack segmentation using an attention residual U-Net with generative adversarial
por: Xing Hu, et al.
Publicado: (2021) -
Self-Supervised Despeckling Algorithm with an Enhanced U-Net for Synthetic Aperture Radar Images
por: Gang Zhang, et al.
Publicado: (2021) -
Does Farmland Scale Management Promote Rural Collective Action? An Empirical Study of Canal Irrigation Systems in China
por: Liangzhen Zang, et al.
Publicado: (2021) -
Evaluating Google Street View for tracking invasive alien plants along roads
por: Dorota Kotowska, et al.
Publicado: (2021)