Estimating, monitoring, and forecasting COVID-19 epidemics: a spatiotemporal approach applied to NYC data
Abstract We propose a susceptible-exposed-infective-recovered-type (SEIR-type) meta-population model to simulate and monitor the (COVID-19) epidemic evolution. The basic model consists of seven categories, namely, susceptible (S), exposed (E), three infective classes, recovered (R), and deceased (D)...
Guardado en:
Autores principales: | Vinicius V. L. Albani, Roberto M. Velho, Jorge P. Zubelli |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0d9237327f4042a091c0875700acee01 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Trends in Usage of Telemedicine During and Post Covid-19 Pandemic Surge in NYC 2020
por: Pratyusha Nunna, et al.
Publicado: (2021) -
Vital signs assessed in initial clinical encounters predict COVID-19 mortality in an NYC hospital system
por: Elza Rechtman, et al.
Publicado: (2020) -
Forecasting Economic Indicators by Applied Technologies of Data Processing
por: R. R. Veynberg, et al.
Publicado: (2021) -
An extended Weight Kernel Density Estimation model forecasts COVID-19 onset risk and identifies spatiotemporal variations of lockdown effects in China
por: Wenzhong Shi, et al.
Publicado: (2021) -
GS&E journal > Stone-Glass Curtain Wall – Designing an Outstanding Facade in NYC
por: Michael Engelmann, et al.
Publicado: (2020)