ECG data dependency for atrial fibrillation detection based on residual networks
Abstract Atrial fibrillation (AF) is an arrhythmia that can cause blood clot and may lead to stroke and heart failure. To detect AF, deep learning-based detection algorithms have recently been developed. However, deep learning models were often trained with limited datasets and were evaluated within...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0da4d25ba9034d199e05998b2199c177 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:0da4d25ba9034d199e05998b2199c177 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:0da4d25ba9034d199e05998b2199c1772021-12-02T18:33:47ZECG data dependency for atrial fibrillation detection based on residual networks10.1038/s41598-021-97308-12045-2322https://doaj.org/article/0da4d25ba9034d199e05998b2199c1772021-09-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-97308-1https://doaj.org/toc/2045-2322Abstract Atrial fibrillation (AF) is an arrhythmia that can cause blood clot and may lead to stroke and heart failure. To detect AF, deep learning-based detection algorithms have recently been developed. However, deep learning models were often trained with limited datasets and were evaluated within the same datasets, which makes their performance generally drops on the external datasets, known as data dependency. For this study, three different databases from PhysioNet were used to investigate the data dependency of deep learning-based AF detection algorithm using the residual neural network (Resnet). Resnet 18, 34, 50 and 152 model were trained with raw electrocardiogram (ECG) signal extracted from independent database. The highest accuracy was about 98–99% which is evaluation results of test dataset from the own database. On the other hand, the lowest accuracy was about 53–92% which was evaluation results of the external dataset extracted from different source. There are data dependency according to the train dataset and the test dataset. However, the data dependency decreased as a large amount of train data.Hyo-Chang SeoSeok OhHyunbin KimSegyeong JooNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-8 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Hyo-Chang Seo Seok Oh Hyunbin Kim Segyeong Joo ECG data dependency for atrial fibrillation detection based on residual networks |
description |
Abstract Atrial fibrillation (AF) is an arrhythmia that can cause blood clot and may lead to stroke and heart failure. To detect AF, deep learning-based detection algorithms have recently been developed. However, deep learning models were often trained with limited datasets and were evaluated within the same datasets, which makes their performance generally drops on the external datasets, known as data dependency. For this study, three different databases from PhysioNet were used to investigate the data dependency of deep learning-based AF detection algorithm using the residual neural network (Resnet). Resnet 18, 34, 50 and 152 model were trained with raw electrocardiogram (ECG) signal extracted from independent database. The highest accuracy was about 98–99% which is evaluation results of test dataset from the own database. On the other hand, the lowest accuracy was about 53–92% which was evaluation results of the external dataset extracted from different source. There are data dependency according to the train dataset and the test dataset. However, the data dependency decreased as a large amount of train data. |
format |
article |
author |
Hyo-Chang Seo Seok Oh Hyunbin Kim Segyeong Joo |
author_facet |
Hyo-Chang Seo Seok Oh Hyunbin Kim Segyeong Joo |
author_sort |
Hyo-Chang Seo |
title |
ECG data dependency for atrial fibrillation detection based on residual networks |
title_short |
ECG data dependency for atrial fibrillation detection based on residual networks |
title_full |
ECG data dependency for atrial fibrillation detection based on residual networks |
title_fullStr |
ECG data dependency for atrial fibrillation detection based on residual networks |
title_full_unstemmed |
ECG data dependency for atrial fibrillation detection based on residual networks |
title_sort |
ecg data dependency for atrial fibrillation detection based on residual networks |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/0da4d25ba9034d199e05998b2199c177 |
work_keys_str_mv |
AT hyochangseo ecgdatadependencyforatrialfibrillationdetectionbasedonresidualnetworks AT seokoh ecgdatadependencyforatrialfibrillationdetectionbasedonresidualnetworks AT hyunbinkim ecgdatadependencyforatrialfibrillationdetectionbasedonresidualnetworks AT segyeongjoo ecgdatadependencyforatrialfibrillationdetectionbasedonresidualnetworks |
_version_ |
1718377902129545216 |