ECG data dependency for atrial fibrillation detection based on residual networks
Abstract Atrial fibrillation (AF) is an arrhythmia that can cause blood clot and may lead to stroke and heart failure. To detect AF, deep learning-based detection algorithms have recently been developed. However, deep learning models were often trained with limited datasets and were evaluated within...
Guardado en:
Autores principales: | Hyo-Chang Seo, Seok Oh, Hyunbin Kim, Segyeong Joo |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0da4d25ba9034d199e05998b2199c177 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Residual Stroke Risk in Atrial Fibrillation
por: Wern Yew Ding
Publicado: (2021) -
ECG Predictors for New-Onset Atrial Fibrillation Within a Year After Radiofrequency Ablation of Counterclockwise-Rotating Atrial Flutter
por: Hailei Liu, et al.
Publicado: (2021) -
Diagnostic performance of a wearing dynamic ECG recorder for atrial fibrillation screening: the HUAMI heart study
por: Wenxia Fu, et al.
Publicado: (2021) -
Analyzing artificial intelligence systems for the prediction of atrial fibrillation from sinus-rhythm ECGs including demographics and feature visualization
por: Pietro Melzi, et al.
Publicado: (2021) -
Photoplethysmography based atrial fibrillation detection: a review
por: Tania Pereira, et al.
Publicado: (2020)