sl(2)ˆ decomposition of denominator formulae of some BKM Lie superalgebras
We study a family of Siegel modular forms that are constructed using Jacobi forms that arise in Umbral moonshine. All but one of them arise as the Weyl-Kac-Borcherds denominator formula of some Borcherds-Kac-Moody (BKM) Lie superalgebras. These Lie superalgebras have a sl(2)ˆ subalgebra which we use...
Guardado en:
Autores principales: | Suresh Govindarajan, Mohammad Shabbir, Sankaran Viswanath |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0db7df3b19bc45c08c35a38ab69f44ba |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Beam-beam interaction in a dielectric laser accelerator electron-positron collider
por: R. Joel England, et al.
Publicado: (2021) -
Simulation of incoherent ion effects in electron storage rings
por: J. Calvey, et al.
Publicado: (2021) -
Non-BPS supersymmetric 3pt amplitude for one massless, two equally massive particles
por: Bo-Ting Chen
Publicado: (2021) -
Erratum and addendum: “Anyon condensation and tensor categories” [Nucl. Phys. B 886 (2014) 436–482]
por: Liang Kong
Publicado: (2021) -
Flavoured resonant leptogenesis at sub-TeV scales
por: A. Granelli, et al.
Publicado: (2021)