Assembly Sequence Planning Using Artificial Neural Networks for Mechanical Parts Based on Selected Criteria
The proposed model of the neural network describes the task of planning the assembly sequence on the basis of predicting the optimal assembly time of mechanical parts. In the proposed neural approach, the k-means clustering algorithm is used. In order to find the most effective network, 10,000 netwo...
Guardado en:
Autores principales: | Marcin Suszyński, Katarzyna Peta |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0dbe4c5ebfe34499ace77773711ef69b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Application of Artificial Neural Networks to Predict Insulation Properties of Lightweight Concrete
por: Marzena Kurpińska, et al.
Publicado: (2021) -
Modeling of the height control system using artificial neural networks
por: A. R Tahavvor, et al.
Publicado: (2016) -
Reservoir Characterisation of High-Pressure, High-Temperature Zone of Malay Basin Using Seismic Inversion and Artificial Neural Network Approach
por: Gulbahar Yazmyradova, et al.
Publicado: (2021) -
A Novel Artificial Neural Network to Predict Compressive Strength of Recycled Aggregate Concrete
por: David Suescum-Morales, et al.
Publicado: (2021) -
Application of Artificial Neural Networks for Predicting the Yield and GHG Emissions of Sugarcane Production
por: S Haroni, et al.
Publicado: (2018)