Collapse dynamics and Hilbert-space stochastic processes
Abstract Spontaneous collapse models of state vector reduction represent a possible solution to the quantum measurement problem. In the present paper we focus our attention on the Ghirardi–Rimini–Weber (GRW) theory and the corresponding continuous localisation models in the form of a Brownian-driven...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0dc08bb20efa47ac84b73ce5b4a8343e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:0dc08bb20efa47ac84b73ce5b4a8343e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:0dc08bb20efa47ac84b73ce5b4a8343e2021-11-14T12:19:22ZCollapse dynamics and Hilbert-space stochastic processes10.1038/s41598-021-00737-12045-2322https://doaj.org/article/0dc08bb20efa47ac84b73ce5b4a8343e2021-11-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-00737-1https://doaj.org/toc/2045-2322Abstract Spontaneous collapse models of state vector reduction represent a possible solution to the quantum measurement problem. In the present paper we focus our attention on the Ghirardi–Rimini–Weber (GRW) theory and the corresponding continuous localisation models in the form of a Brownian-driven motion in Hilbert space. We consider experimental setups in which a single photon hits a beam splitter and is subsequently detected by photon detector(s), generating a superposition of photon-detector quantum states. Through a numerical approach we study the dependence of collapse times on the physical features of the superposition generated, including also the effect of a finite reaction time of the measuring apparatus. We find that collapse dynamics is sensitive to the number of detectors and the physical properties of the photon-detector quantum states superposition.Daniele BajoniOreste NicrosiniAlberto RiminiSimone RodiniNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-12 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Daniele Bajoni Oreste Nicrosini Alberto Rimini Simone Rodini Collapse dynamics and Hilbert-space stochastic processes |
description |
Abstract Spontaneous collapse models of state vector reduction represent a possible solution to the quantum measurement problem. In the present paper we focus our attention on the Ghirardi–Rimini–Weber (GRW) theory and the corresponding continuous localisation models in the form of a Brownian-driven motion in Hilbert space. We consider experimental setups in which a single photon hits a beam splitter and is subsequently detected by photon detector(s), generating a superposition of photon-detector quantum states. Through a numerical approach we study the dependence of collapse times on the physical features of the superposition generated, including also the effect of a finite reaction time of the measuring apparatus. We find that collapse dynamics is sensitive to the number of detectors and the physical properties of the photon-detector quantum states superposition. |
format |
article |
author |
Daniele Bajoni Oreste Nicrosini Alberto Rimini Simone Rodini |
author_facet |
Daniele Bajoni Oreste Nicrosini Alberto Rimini Simone Rodini |
author_sort |
Daniele Bajoni |
title |
Collapse dynamics and Hilbert-space stochastic processes |
title_short |
Collapse dynamics and Hilbert-space stochastic processes |
title_full |
Collapse dynamics and Hilbert-space stochastic processes |
title_fullStr |
Collapse dynamics and Hilbert-space stochastic processes |
title_full_unstemmed |
Collapse dynamics and Hilbert-space stochastic processes |
title_sort |
collapse dynamics and hilbert-space stochastic processes |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/0dc08bb20efa47ac84b73ce5b4a8343e |
work_keys_str_mv |
AT danielebajoni collapsedynamicsandhilbertspacestochasticprocesses AT orestenicrosini collapsedynamicsandhilbertspacestochasticprocesses AT albertorimini collapsedynamicsandhilbertspacestochasticprocesses AT simonerodini collapsedynamicsandhilbertspacestochasticprocesses |
_version_ |
1718429271274291200 |