Collapse dynamics and Hilbert-space stochastic processes

Abstract Spontaneous collapse models of state vector reduction represent a possible solution to the quantum measurement problem. In the present paper we focus our attention on the Ghirardi–Rimini–Weber (GRW) theory and the corresponding continuous localisation models in the form of a Brownian-driven...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Daniele Bajoni, Oreste Nicrosini, Alberto Rimini, Simone Rodini
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/0dc08bb20efa47ac84b73ce5b4a8343e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0dc08bb20efa47ac84b73ce5b4a8343e
record_format dspace
spelling oai:doaj.org-article:0dc08bb20efa47ac84b73ce5b4a8343e2021-11-14T12:19:22ZCollapse dynamics and Hilbert-space stochastic processes10.1038/s41598-021-00737-12045-2322https://doaj.org/article/0dc08bb20efa47ac84b73ce5b4a8343e2021-11-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-00737-1https://doaj.org/toc/2045-2322Abstract Spontaneous collapse models of state vector reduction represent a possible solution to the quantum measurement problem. In the present paper we focus our attention on the Ghirardi–Rimini–Weber (GRW) theory and the corresponding continuous localisation models in the form of a Brownian-driven motion in Hilbert space. We consider experimental setups in which a single photon hits a beam splitter and is subsequently detected by photon detector(s), generating a superposition of photon-detector quantum states. Through a numerical approach we study the dependence of collapse times on the physical features of the superposition generated, including also the effect of a finite reaction time of the measuring apparatus. We find that collapse dynamics is sensitive to the number of detectors and the physical properties of the photon-detector quantum states superposition.Daniele BajoniOreste NicrosiniAlberto RiminiSimone RodiniNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-12 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Daniele Bajoni
Oreste Nicrosini
Alberto Rimini
Simone Rodini
Collapse dynamics and Hilbert-space stochastic processes
description Abstract Spontaneous collapse models of state vector reduction represent a possible solution to the quantum measurement problem. In the present paper we focus our attention on the Ghirardi–Rimini–Weber (GRW) theory and the corresponding continuous localisation models in the form of a Brownian-driven motion in Hilbert space. We consider experimental setups in which a single photon hits a beam splitter and is subsequently detected by photon detector(s), generating a superposition of photon-detector quantum states. Through a numerical approach we study the dependence of collapse times on the physical features of the superposition generated, including also the effect of a finite reaction time of the measuring apparatus. We find that collapse dynamics is sensitive to the number of detectors and the physical properties of the photon-detector quantum states superposition.
format article
author Daniele Bajoni
Oreste Nicrosini
Alberto Rimini
Simone Rodini
author_facet Daniele Bajoni
Oreste Nicrosini
Alberto Rimini
Simone Rodini
author_sort Daniele Bajoni
title Collapse dynamics and Hilbert-space stochastic processes
title_short Collapse dynamics and Hilbert-space stochastic processes
title_full Collapse dynamics and Hilbert-space stochastic processes
title_fullStr Collapse dynamics and Hilbert-space stochastic processes
title_full_unstemmed Collapse dynamics and Hilbert-space stochastic processes
title_sort collapse dynamics and hilbert-space stochastic processes
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/0dc08bb20efa47ac84b73ce5b4a8343e
work_keys_str_mv AT danielebajoni collapsedynamicsandhilbertspacestochasticprocesses
AT orestenicrosini collapsedynamicsandhilbertspacestochasticprocesses
AT albertorimini collapsedynamicsandhilbertspacestochasticprocesses
AT simonerodini collapsedynamicsandhilbertspacestochasticprocesses
_version_ 1718429271274291200