A bioinformatics approach to the structure, function, and evolution of the nucleoprotein of the order mononegavirales.
The goal of this Bioinformatic study is to investigate sequence conservation in relation to evolutionary function/structure of the nucleoprotein of the order Mononegavirales. In the combined analysis of 63 representative nucleoprotein (N) sequences from four viral families (Bornaviridae, Filoviridae...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2011
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0dc3e272664f494e8f60f8f85ea9e739 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:0dc3e272664f494e8f60f8f85ea9e739 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:0dc3e272664f494e8f60f8f85ea9e7392021-11-18T06:54:33ZA bioinformatics approach to the structure, function, and evolution of the nucleoprotein of the order mononegavirales.1932-620310.1371/journal.pone.0019275https://doaj.org/article/0dc3e272664f494e8f60f8f85ea9e7392011-05-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/21559282/?tool=EBIhttps://doaj.org/toc/1932-6203The goal of this Bioinformatic study is to investigate sequence conservation in relation to evolutionary function/structure of the nucleoprotein of the order Mononegavirales. In the combined analysis of 63 representative nucleoprotein (N) sequences from four viral families (Bornaviridae, Filoviridae, Rhabdoviridae, and Paramyxoviridae) we predict the regions of protein disorder, intra-residue contact and co-evolving residues. Correlations between location and conservation of predicted regions illustrate a strong division between families while high- lighting conservation within individual families. These results suggest the conserved regions among the nucleoproteins, specifically within Rhabdoviridae and Paramyxoviradae, but also generally among all members of the order, reflect an evolutionary advantage in maintaining these sites for the viral nucleoprotein as part of the transcription/replication machinery. Results indicate conservation for disorder in the C-terminus region of the representative proteins that is important for interacting with the phosphoprotein and the large subunit polymerase during transcription and replication. Additionally, the C-terminus region of the protein preceding the disordered region, is predicted to be important for interacting with the encapsidated genome. Portions of the N-terminus are responsible for N∶N stability and interactions identified by the presence or lack of co-evolving intra-protein contact predictions. The validation of these prediction results by current structural information illustrates the benefits of the Disorder, Intra-residue contact and Compensatory mutation Correlator (DisICC) pipeline as a method for quickly characterizing proteins and providing the most likely residues and regions necessary to target for disruption in viruses that have little structural information available.Sean B ClevelandJohn DaviesMarcella A McClurePublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 6, Iss 5, p e19275 (2011) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Sean B Cleveland John Davies Marcella A McClure A bioinformatics approach to the structure, function, and evolution of the nucleoprotein of the order mononegavirales. |
description |
The goal of this Bioinformatic study is to investigate sequence conservation in relation to evolutionary function/structure of the nucleoprotein of the order Mononegavirales. In the combined analysis of 63 representative nucleoprotein (N) sequences from four viral families (Bornaviridae, Filoviridae, Rhabdoviridae, and Paramyxoviridae) we predict the regions of protein disorder, intra-residue contact and co-evolving residues. Correlations between location and conservation of predicted regions illustrate a strong division between families while high- lighting conservation within individual families. These results suggest the conserved regions among the nucleoproteins, specifically within Rhabdoviridae and Paramyxoviradae, but also generally among all members of the order, reflect an evolutionary advantage in maintaining these sites for the viral nucleoprotein as part of the transcription/replication machinery. Results indicate conservation for disorder in the C-terminus region of the representative proteins that is important for interacting with the phosphoprotein and the large subunit polymerase during transcription and replication. Additionally, the C-terminus region of the protein preceding the disordered region, is predicted to be important for interacting with the encapsidated genome. Portions of the N-terminus are responsible for N∶N stability and interactions identified by the presence or lack of co-evolving intra-protein contact predictions. The validation of these prediction results by current structural information illustrates the benefits of the Disorder, Intra-residue contact and Compensatory mutation Correlator (DisICC) pipeline as a method for quickly characterizing proteins and providing the most likely residues and regions necessary to target for disruption in viruses that have little structural information available. |
format |
article |
author |
Sean B Cleveland John Davies Marcella A McClure |
author_facet |
Sean B Cleveland John Davies Marcella A McClure |
author_sort |
Sean B Cleveland |
title |
A bioinformatics approach to the structure, function, and evolution of the nucleoprotein of the order mononegavirales. |
title_short |
A bioinformatics approach to the structure, function, and evolution of the nucleoprotein of the order mononegavirales. |
title_full |
A bioinformatics approach to the structure, function, and evolution of the nucleoprotein of the order mononegavirales. |
title_fullStr |
A bioinformatics approach to the structure, function, and evolution of the nucleoprotein of the order mononegavirales. |
title_full_unstemmed |
A bioinformatics approach to the structure, function, and evolution of the nucleoprotein of the order mononegavirales. |
title_sort |
bioinformatics approach to the structure, function, and evolution of the nucleoprotein of the order mononegavirales. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2011 |
url |
https://doaj.org/article/0dc3e272664f494e8f60f8f85ea9e739 |
work_keys_str_mv |
AT seanbcleveland abioinformaticsapproachtothestructurefunctionandevolutionofthenucleoproteinoftheordermononegavirales AT johndavies abioinformaticsapproachtothestructurefunctionandevolutionofthenucleoproteinoftheordermononegavirales AT marcellaamcclure abioinformaticsapproachtothestructurefunctionandevolutionofthenucleoproteinoftheordermononegavirales AT seanbcleveland bioinformaticsapproachtothestructurefunctionandevolutionofthenucleoproteinoftheordermononegavirales AT johndavies bioinformaticsapproachtothestructurefunctionandevolutionofthenucleoproteinoftheordermononegavirales AT marcellaamcclure bioinformaticsapproachtothestructurefunctionandevolutionofthenucleoproteinoftheordermononegavirales |
_version_ |
1718424211683278848 |