Analyses of child cardiometabolic phenotype following assisted reproductive technologies using a pragmatic trial emulation approach

Huang and colleagues used machine-learning estimators to analyse a broad range of parameters in a prospective cohort consisting ART and spontaneously conceived children. Small differences in stature and growth could not be explained by parental or perinatal environment factors, nor differences in fe...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jonathan Yinhao Huang, Shirong Cai, Zhongwei Huang, Mya Thway Tint, Wen Lun Yuan, Izzuddin M. Aris, Keith M. Godfrey, Neerja Karnani, Yung Seng Lee, Jerry Kok Yen Chan, Yap Seng Chong, Johan Gunnar Eriksson, Shiao-Yng Chan
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/0dcc6959279147e19b2fae8d5e9574cb
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Huang and colleagues used machine-learning estimators to analyse a broad range of parameters in a prospective cohort consisting ART and spontaneously conceived children. Small differences in stature and growth could not be explained by parental or perinatal environment factors, nor differences in fetal DNA methylation. No strong differences in metabolic parameters were seen.