A meta-analysis of the diagnostic performance of machine learning-based MRI in the prediction of axillary lymph node metastasis in breast cancer patients
Abstract Background Despite that machine learning (ML)-based MRI has been evaluated for diagnosis of axillary lymph node metastasis (ALNM) in breast cancer patients, diagnostic values they showed have been variable. In this study, we aimed to assess the use of ML to classify ALNM on MRI and to ident...
Guardado en:
Autores principales: | Chen Chen, Yuhui Qin, Haotian Chen, Dongyong Zhu, Fabao Gao, Xiaoyue Zhou |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SpringerOpen
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0dce7e64b6d74345803205cf17539f04 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Impact of Molecular Subtypes of Breast Cancer on Axillary Lymph Node Metastasis: A Tertiary Center Experience
por: Dharmendra Singh, et al.
Publicado: (2021) -
Modern view on the issues of diagnosis and verification of axillary lymph nodes involvement in early breast cancer
por: Irina V. Kolyadina, et al.
Publicado: (2020) -
Value of 18F-FDG PET/CT for predicting axillary pathologic complete response following neoadjuvant systemic therapy in breast cancer patients: emphasis on breast cancer subtype
por: Cornelis M. de Mooij, et al.
Publicado: (2021) -
Upregulation of lncRNA BANCR associated with the lymph node metastasis and poor prognosis in colorectal cancer
por: Shen,Xiaogang, et al.
Publicado: (2017) -
CT for estimating adequacy of lymph node dissection in patients with squamous cell carcinoma of the head and neck
por: Christiaan A. Rees, et al.
Publicado: (2021)