NQR sensitive embedded signatures for authenticating additively manufactured objects
Abstract Automatic recognition of unique characteristics of an object can provide a powerful solution to verify its authenticity and safety. It can mitigate the growth of one of the largest underground industries—that of counterfeit goods–flowing through the global supply chain. In this article, we...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0dcf0dd4fcbc4661b6d4c4a4e7b837c5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:0dcf0dd4fcbc4661b6d4c4a4e7b837c5 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:0dcf0dd4fcbc4661b6d4c4a4e7b837c52021-12-02T17:34:48ZNQR sensitive embedded signatures for authenticating additively manufactured objects10.1038/s41598-021-91531-62045-2322https://doaj.org/article/0dcf0dd4fcbc4661b6d4c4a4e7b837c52021-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-91531-6https://doaj.org/toc/2045-2322Abstract Automatic recognition of unique characteristics of an object can provide a powerful solution to verify its authenticity and safety. It can mitigate the growth of one of the largest underground industries—that of counterfeit goods–flowing through the global supply chain. In this article, we propose the novel concept of material biometrics, in which the intrinsic chemical properties of structural materials are used to generate unique identifiers for authenticating individual products. For this purpose, the objects to be protected are modified via programmable additive manufacturing of built-in chemical “tags” that generate signatures depending on their chemical composition, quantity, and location. We report a material biometrics-enabled manufacturing flow in which plastic objects are protected using spatially-distributed tags that are optically invisible and difficult to clone. The resulting multi-bit signatures have high entropy and can be non-invasively detected for product authentication using $$^{35}$$ 35 Cl nuclear quadrupole resonance (NQR) spectroscopy.Naren Vikram Raj MasnaJunjun HuanSoumyajit MandalSwarup BhuniaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-12 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Naren Vikram Raj Masna Junjun Huan Soumyajit Mandal Swarup Bhunia NQR sensitive embedded signatures for authenticating additively manufactured objects |
description |
Abstract Automatic recognition of unique characteristics of an object can provide a powerful solution to verify its authenticity and safety. It can mitigate the growth of one of the largest underground industries—that of counterfeit goods–flowing through the global supply chain. In this article, we propose the novel concept of material biometrics, in which the intrinsic chemical properties of structural materials are used to generate unique identifiers for authenticating individual products. For this purpose, the objects to be protected are modified via programmable additive manufacturing of built-in chemical “tags” that generate signatures depending on their chemical composition, quantity, and location. We report a material biometrics-enabled manufacturing flow in which plastic objects are protected using spatially-distributed tags that are optically invisible and difficult to clone. The resulting multi-bit signatures have high entropy and can be non-invasively detected for product authentication using $$^{35}$$ 35 Cl nuclear quadrupole resonance (NQR) spectroscopy. |
format |
article |
author |
Naren Vikram Raj Masna Junjun Huan Soumyajit Mandal Swarup Bhunia |
author_facet |
Naren Vikram Raj Masna Junjun Huan Soumyajit Mandal Swarup Bhunia |
author_sort |
Naren Vikram Raj Masna |
title |
NQR sensitive embedded signatures for authenticating additively manufactured objects |
title_short |
NQR sensitive embedded signatures for authenticating additively manufactured objects |
title_full |
NQR sensitive embedded signatures for authenticating additively manufactured objects |
title_fullStr |
NQR sensitive embedded signatures for authenticating additively manufactured objects |
title_full_unstemmed |
NQR sensitive embedded signatures for authenticating additively manufactured objects |
title_sort |
nqr sensitive embedded signatures for authenticating additively manufactured objects |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/0dcf0dd4fcbc4661b6d4c4a4e7b837c5 |
work_keys_str_mv |
AT narenvikramrajmasna nqrsensitiveembeddedsignaturesforauthenticatingadditivelymanufacturedobjects AT junjunhuan nqrsensitiveembeddedsignaturesforauthenticatingadditivelymanufacturedobjects AT soumyajitmandal nqrsensitiveembeddedsignaturesforauthenticatingadditivelymanufacturedobjects AT swarupbhunia nqrsensitiveembeddedsignaturesforauthenticatingadditivelymanufacturedobjects |
_version_ |
1718379922381078528 |