Artificial intelligence-enabled fully automated detection of cardiac amyloidosis using electrocardiograms and echocardiograms

Cardiac amyloidosis is difficult to identify, given low prevalence and similarity of the symptoms to more prevalent disorders. Here the authors present a multi-modality, artificial intelligence-enabled pipeline, that enables automated detection of cardiac amyloidosis from inexpensive and accessible...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Shinichi Goto, Keitaro Mahara, Lauren Beussink-Nelson, Hidehiko Ikura, Yoshinori Katsumata, Jin Endo, Hanna K. Gaggin, Sanjiv J. Shah, Yuji Itabashi, Calum A. MacRae, Rahul C. Deo
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/0dd314b5edb84808bd06d6589d77bb90
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0dd314b5edb84808bd06d6589d77bb90
record_format dspace
spelling oai:doaj.org-article:0dd314b5edb84808bd06d6589d77bb902021-12-02T14:35:45ZArtificial intelligence-enabled fully automated detection of cardiac amyloidosis using electrocardiograms and echocardiograms10.1038/s41467-021-22877-82041-1723https://doaj.org/article/0dd314b5edb84808bd06d6589d77bb902021-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-22877-8https://doaj.org/toc/2041-1723Cardiac amyloidosis is difficult to identify, given low prevalence and similarity of the symptoms to more prevalent disorders. Here the authors present a multi-modality, artificial intelligence-enabled pipeline, that enables automated detection of cardiac amyloidosis from inexpensive and accessible measures.Shinichi GotoKeitaro MaharaLauren Beussink-NelsonHidehiko IkuraYoshinori KatsumataJin EndoHanna K. GagginSanjiv J. ShahYuji ItabashiCalum A. MacRaeRahul C. DeoNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-12 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Shinichi Goto
Keitaro Mahara
Lauren Beussink-Nelson
Hidehiko Ikura
Yoshinori Katsumata
Jin Endo
Hanna K. Gaggin
Sanjiv J. Shah
Yuji Itabashi
Calum A. MacRae
Rahul C. Deo
Artificial intelligence-enabled fully automated detection of cardiac amyloidosis using electrocardiograms and echocardiograms
description Cardiac amyloidosis is difficult to identify, given low prevalence and similarity of the symptoms to more prevalent disorders. Here the authors present a multi-modality, artificial intelligence-enabled pipeline, that enables automated detection of cardiac amyloidosis from inexpensive and accessible measures.
format article
author Shinichi Goto
Keitaro Mahara
Lauren Beussink-Nelson
Hidehiko Ikura
Yoshinori Katsumata
Jin Endo
Hanna K. Gaggin
Sanjiv J. Shah
Yuji Itabashi
Calum A. MacRae
Rahul C. Deo
author_facet Shinichi Goto
Keitaro Mahara
Lauren Beussink-Nelson
Hidehiko Ikura
Yoshinori Katsumata
Jin Endo
Hanna K. Gaggin
Sanjiv J. Shah
Yuji Itabashi
Calum A. MacRae
Rahul C. Deo
author_sort Shinichi Goto
title Artificial intelligence-enabled fully automated detection of cardiac amyloidosis using electrocardiograms and echocardiograms
title_short Artificial intelligence-enabled fully automated detection of cardiac amyloidosis using electrocardiograms and echocardiograms
title_full Artificial intelligence-enabled fully automated detection of cardiac amyloidosis using electrocardiograms and echocardiograms
title_fullStr Artificial intelligence-enabled fully automated detection of cardiac amyloidosis using electrocardiograms and echocardiograms
title_full_unstemmed Artificial intelligence-enabled fully automated detection of cardiac amyloidosis using electrocardiograms and echocardiograms
title_sort artificial intelligence-enabled fully automated detection of cardiac amyloidosis using electrocardiograms and echocardiograms
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/0dd314b5edb84808bd06d6589d77bb90
work_keys_str_mv AT shinichigoto artificialintelligenceenabledfullyautomateddetectionofcardiacamyloidosisusingelectrocardiogramsandechocardiograms
AT keitaromahara artificialintelligenceenabledfullyautomateddetectionofcardiacamyloidosisusingelectrocardiogramsandechocardiograms
AT laurenbeussinknelson artificialintelligenceenabledfullyautomateddetectionofcardiacamyloidosisusingelectrocardiogramsandechocardiograms
AT hidehikoikura artificialintelligenceenabledfullyautomateddetectionofcardiacamyloidosisusingelectrocardiogramsandechocardiograms
AT yoshinorikatsumata artificialintelligenceenabledfullyautomateddetectionofcardiacamyloidosisusingelectrocardiogramsandechocardiograms
AT jinendo artificialintelligenceenabledfullyautomateddetectionofcardiacamyloidosisusingelectrocardiogramsandechocardiograms
AT hannakgaggin artificialintelligenceenabledfullyautomateddetectionofcardiacamyloidosisusingelectrocardiogramsandechocardiograms
AT sanjivjshah artificialintelligenceenabledfullyautomateddetectionofcardiacamyloidosisusingelectrocardiogramsandechocardiograms
AT yujiitabashi artificialintelligenceenabledfullyautomateddetectionofcardiacamyloidosisusingelectrocardiogramsandechocardiograms
AT calumamacrae artificialintelligenceenabledfullyautomateddetectionofcardiacamyloidosisusingelectrocardiogramsandechocardiograms
AT rahulcdeo artificialintelligenceenabledfullyautomateddetectionofcardiacamyloidosisusingelectrocardiogramsandechocardiograms
_version_ 1718391054026145792