Artificial intelligence-enabled fully automated detection of cardiac amyloidosis using electrocardiograms and echocardiograms
Cardiac amyloidosis is difficult to identify, given low prevalence and similarity of the symptoms to more prevalent disorders. Here the authors present a multi-modality, artificial intelligence-enabled pipeline, that enables automated detection of cardiac amyloidosis from inexpensive and accessible...
Guardado en:
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0dd314b5edb84808bd06d6589d77bb90 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:0dd314b5edb84808bd06d6589d77bb90 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:0dd314b5edb84808bd06d6589d77bb902021-12-02T14:35:45ZArtificial intelligence-enabled fully automated detection of cardiac amyloidosis using electrocardiograms and echocardiograms10.1038/s41467-021-22877-82041-1723https://doaj.org/article/0dd314b5edb84808bd06d6589d77bb902021-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-22877-8https://doaj.org/toc/2041-1723Cardiac amyloidosis is difficult to identify, given low prevalence and similarity of the symptoms to more prevalent disorders. Here the authors present a multi-modality, artificial intelligence-enabled pipeline, that enables automated detection of cardiac amyloidosis from inexpensive and accessible measures.Shinichi GotoKeitaro MaharaLauren Beussink-NelsonHidehiko IkuraYoshinori KatsumataJin EndoHanna K. GagginSanjiv J. ShahYuji ItabashiCalum A. MacRaeRahul C. DeoNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-12 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Shinichi Goto Keitaro Mahara Lauren Beussink-Nelson Hidehiko Ikura Yoshinori Katsumata Jin Endo Hanna K. Gaggin Sanjiv J. Shah Yuji Itabashi Calum A. MacRae Rahul C. Deo Artificial intelligence-enabled fully automated detection of cardiac amyloidosis using electrocardiograms and echocardiograms |
description |
Cardiac amyloidosis is difficult to identify, given low prevalence and similarity of the symptoms to more prevalent disorders. Here the authors present a multi-modality, artificial intelligence-enabled pipeline, that enables automated detection of cardiac amyloidosis from inexpensive and accessible measures. |
format |
article |
author |
Shinichi Goto Keitaro Mahara Lauren Beussink-Nelson Hidehiko Ikura Yoshinori Katsumata Jin Endo Hanna K. Gaggin Sanjiv J. Shah Yuji Itabashi Calum A. MacRae Rahul C. Deo |
author_facet |
Shinichi Goto Keitaro Mahara Lauren Beussink-Nelson Hidehiko Ikura Yoshinori Katsumata Jin Endo Hanna K. Gaggin Sanjiv J. Shah Yuji Itabashi Calum A. MacRae Rahul C. Deo |
author_sort |
Shinichi Goto |
title |
Artificial intelligence-enabled fully automated detection of cardiac amyloidosis using electrocardiograms and echocardiograms |
title_short |
Artificial intelligence-enabled fully automated detection of cardiac amyloidosis using electrocardiograms and echocardiograms |
title_full |
Artificial intelligence-enabled fully automated detection of cardiac amyloidosis using electrocardiograms and echocardiograms |
title_fullStr |
Artificial intelligence-enabled fully automated detection of cardiac amyloidosis using electrocardiograms and echocardiograms |
title_full_unstemmed |
Artificial intelligence-enabled fully automated detection of cardiac amyloidosis using electrocardiograms and echocardiograms |
title_sort |
artificial intelligence-enabled fully automated detection of cardiac amyloidosis using electrocardiograms and echocardiograms |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/0dd314b5edb84808bd06d6589d77bb90 |
work_keys_str_mv |
AT shinichigoto artificialintelligenceenabledfullyautomateddetectionofcardiacamyloidosisusingelectrocardiogramsandechocardiograms AT keitaromahara artificialintelligenceenabledfullyautomateddetectionofcardiacamyloidosisusingelectrocardiogramsandechocardiograms AT laurenbeussinknelson artificialintelligenceenabledfullyautomateddetectionofcardiacamyloidosisusingelectrocardiogramsandechocardiograms AT hidehikoikura artificialintelligenceenabledfullyautomateddetectionofcardiacamyloidosisusingelectrocardiogramsandechocardiograms AT yoshinorikatsumata artificialintelligenceenabledfullyautomateddetectionofcardiacamyloidosisusingelectrocardiogramsandechocardiograms AT jinendo artificialintelligenceenabledfullyautomateddetectionofcardiacamyloidosisusingelectrocardiogramsandechocardiograms AT hannakgaggin artificialintelligenceenabledfullyautomateddetectionofcardiacamyloidosisusingelectrocardiogramsandechocardiograms AT sanjivjshah artificialintelligenceenabledfullyautomateddetectionofcardiacamyloidosisusingelectrocardiogramsandechocardiograms AT yujiitabashi artificialintelligenceenabledfullyautomateddetectionofcardiacamyloidosisusingelectrocardiogramsandechocardiograms AT calumamacrae artificialintelligenceenabledfullyautomateddetectionofcardiacamyloidosisusingelectrocardiogramsandechocardiograms AT rahulcdeo artificialintelligenceenabledfullyautomateddetectionofcardiacamyloidosisusingelectrocardiogramsandechocardiograms |
_version_ |
1718391054026145792 |