Explore Protein Conformational Space With Variational Autoencoder
Molecular dynamics (MD) simulations have been actively used in the study of protein structure and function. However, extensive sampling in the protein conformational space requires large computational resources and takes a prohibitive amount of time. In this study, we demonstrated that variational a...
Guardado en:
Autores principales: | Hao Tian, Xi Jiang, Francesco Trozzi, Sian Xiao, Eric C. Larson, Peng Tao |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0dd63e9213564b10acf17ca8968be3b0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Conditional Variational Autoencoder for Learned Image Reconstruction
por: Chen Zhang, et al.
Publicado: (2021) -
Adversarial Attention-Based Variational Graph Autoencoder
por: Ziqiang Weng, et al.
Publicado: (2020) -
Optimizing Few-Shot Learning Based on Variational Autoencoders
por: Ruoqi Wei, et al.
Publicado: (2021) -
Multi-Run Concrete Autoencoder to Identify Prognostic lncRNAs for 12 Cancers
por: Abdullah Al Mamun, et al.
Publicado: (2021) -
On quasi-conformally flat and quasi-conformally semisymmetric generalized Sasakian-space-forms
por: Prakasha,D.G, et al.
Publicado: (2013)