Explore Protein Conformational Space With Variational Autoencoder
Molecular dynamics (MD) simulations have been actively used in the study of protein structure and function. However, extensive sampling in the protein conformational space requires large computational resources and takes a prohibitive amount of time. In this study, we demonstrated that variational a...
Enregistré dans:
Auteurs principaux: | Hao Tian, Xi Jiang, Francesco Trozzi, Sian Xiao, Eric C. Larson, Peng Tao |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Frontiers Media S.A.
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/0dd63e9213564b10acf17ca8968be3b0 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Conditional Variational Autoencoder for Learned Image Reconstruction
par: Chen Zhang, et autres
Publié: (2021) -
Adversarial Attention-Based Variational Graph Autoencoder
par: Ziqiang Weng, et autres
Publié: (2020) -
Optimizing Few-Shot Learning Based on Variational Autoencoders
par: Ruoqi Wei, et autres
Publié: (2021) -
Multi-Run Concrete Autoencoder to Identify Prognostic lncRNAs for 12 Cancers
par: Abdullah Al Mamun, et autres
Publié: (2021) -
On quasi-conformally flat and quasi-conformally semisymmetric generalized Sasakian-space-forms
par: Prakasha,D.G, et autres
Publié: (2013)