Sub-Finsler Horofunction Boundaries of the Heisenberg Group
We give a complete analytic and geometric description of the horofunction boundary for polygonal sub-Finsler metrics, that is, those that arise as asymptotic cones of word metrics, on the Heisenberg group. We develop theory for the more general case of horofunction boundaries in homogeneous groups b...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0de05ac6f95a4075abc8c9301ff88c35 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:0de05ac6f95a4075abc8c9301ff88c35 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:0de05ac6f95a4075abc8c9301ff88c352021-12-05T14:10:38ZSub-Finsler Horofunction Boundaries of the Heisenberg Group2299-327410.1515/agms-2020-0121https://doaj.org/article/0de05ac6f95a4075abc8c9301ff88c352021-03-01T00:00:00Zhttps://doi.org/10.1515/agms-2020-0121https://doaj.org/toc/2299-3274We give a complete analytic and geometric description of the horofunction boundary for polygonal sub-Finsler metrics, that is, those that arise as asymptotic cones of word metrics, on the Heisenberg group. We develop theory for the more general case of horofunction boundaries in homogeneous groups by connecting horofunctions to Pansu derivatives of the distance function.Fisher NateGolo Sebastiano NicolussiDe Gruyterarticlehoroboundarysub-finsler distancehomogeneous groupheisenberg group20f6953c2353c17AnalysisQA299.6-433ENAnalysis and Geometry in Metric Spaces, Vol 9, Iss 1, Pp 19-52 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
horoboundary sub-finsler distance homogeneous group heisenberg group 20f69 53c23 53c17 Analysis QA299.6-433 |
spellingShingle |
horoboundary sub-finsler distance homogeneous group heisenberg group 20f69 53c23 53c17 Analysis QA299.6-433 Fisher Nate Golo Sebastiano Nicolussi Sub-Finsler Horofunction Boundaries of the Heisenberg Group |
description |
We give a complete analytic and geometric description of the horofunction boundary for polygonal sub-Finsler metrics, that is, those that arise as asymptotic cones of word metrics, on the Heisenberg group. We develop theory for the more general case of horofunction boundaries in homogeneous groups by connecting horofunctions to Pansu derivatives of the distance function. |
format |
article |
author |
Fisher Nate Golo Sebastiano Nicolussi |
author_facet |
Fisher Nate Golo Sebastiano Nicolussi |
author_sort |
Fisher Nate |
title |
Sub-Finsler Horofunction Boundaries of the Heisenberg Group |
title_short |
Sub-Finsler Horofunction Boundaries of the Heisenberg Group |
title_full |
Sub-Finsler Horofunction Boundaries of the Heisenberg Group |
title_fullStr |
Sub-Finsler Horofunction Boundaries of the Heisenberg Group |
title_full_unstemmed |
Sub-Finsler Horofunction Boundaries of the Heisenberg Group |
title_sort |
sub-finsler horofunction boundaries of the heisenberg group |
publisher |
De Gruyter |
publishDate |
2021 |
url |
https://doaj.org/article/0de05ac6f95a4075abc8c9301ff88c35 |
work_keys_str_mv |
AT fishernate subfinslerhorofunctionboundariesoftheheisenberggroup AT golosebastianonicolussi subfinslerhorofunctionboundariesoftheheisenberggroup |
_version_ |
1718371880860123136 |