Sub-Finsler Horofunction Boundaries of the Heisenberg Group

We give a complete analytic and geometric description of the horofunction boundary for polygonal sub-Finsler metrics, that is, those that arise as asymptotic cones of word metrics, on the Heisenberg group. We develop theory for the more general case of horofunction boundaries in homogeneous groups b...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Fisher Nate, Golo Sebastiano Nicolussi
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/0de05ac6f95a4075abc8c9301ff88c35
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0de05ac6f95a4075abc8c9301ff88c35
record_format dspace
spelling oai:doaj.org-article:0de05ac6f95a4075abc8c9301ff88c352021-12-05T14:10:38ZSub-Finsler Horofunction Boundaries of the Heisenberg Group2299-327410.1515/agms-2020-0121https://doaj.org/article/0de05ac6f95a4075abc8c9301ff88c352021-03-01T00:00:00Zhttps://doi.org/10.1515/agms-2020-0121https://doaj.org/toc/2299-3274We give a complete analytic and geometric description of the horofunction boundary for polygonal sub-Finsler metrics, that is, those that arise as asymptotic cones of word metrics, on the Heisenberg group. We develop theory for the more general case of horofunction boundaries in homogeneous groups by connecting horofunctions to Pansu derivatives of the distance function.Fisher NateGolo Sebastiano NicolussiDe Gruyterarticlehoroboundarysub-finsler distancehomogeneous groupheisenberg group20f6953c2353c17AnalysisQA299.6-433ENAnalysis and Geometry in Metric Spaces, Vol 9, Iss 1, Pp 19-52 (2021)
institution DOAJ
collection DOAJ
language EN
topic horoboundary
sub-finsler distance
homogeneous group
heisenberg group
20f69
53c23
53c17
Analysis
QA299.6-433
spellingShingle horoboundary
sub-finsler distance
homogeneous group
heisenberg group
20f69
53c23
53c17
Analysis
QA299.6-433
Fisher Nate
Golo Sebastiano Nicolussi
Sub-Finsler Horofunction Boundaries of the Heisenberg Group
description We give a complete analytic and geometric description of the horofunction boundary for polygonal sub-Finsler metrics, that is, those that arise as asymptotic cones of word metrics, on the Heisenberg group. We develop theory for the more general case of horofunction boundaries in homogeneous groups by connecting horofunctions to Pansu derivatives of the distance function.
format article
author Fisher Nate
Golo Sebastiano Nicolussi
author_facet Fisher Nate
Golo Sebastiano Nicolussi
author_sort Fisher Nate
title Sub-Finsler Horofunction Boundaries of the Heisenberg Group
title_short Sub-Finsler Horofunction Boundaries of the Heisenberg Group
title_full Sub-Finsler Horofunction Boundaries of the Heisenberg Group
title_fullStr Sub-Finsler Horofunction Boundaries of the Heisenberg Group
title_full_unstemmed Sub-Finsler Horofunction Boundaries of the Heisenberg Group
title_sort sub-finsler horofunction boundaries of the heisenberg group
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/0de05ac6f95a4075abc8c9301ff88c35
work_keys_str_mv AT fishernate subfinslerhorofunctionboundariesoftheheisenberggroup
AT golosebastianonicolussi subfinslerhorofunctionboundariesoftheheisenberggroup
_version_ 1718371880860123136