Sub-Finsler Horofunction Boundaries of the Heisenberg Group
We give a complete analytic and geometric description of the horofunction boundary for polygonal sub-Finsler metrics, that is, those that arise as asymptotic cones of word metrics, on the Heisenberg group. We develop theory for the more general case of horofunction boundaries in homogeneous groups b...
Guardado en:
Autores principales: | Fisher Nate, Golo Sebastiano Nicolussi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0de05ac6f95a4075abc8c9301ff88c35 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Primer on Carnot Groups: Homogenous Groups, Carnot-Carathéodory Spaces, and Regularity of Their Isometries
por: Le Donne Enrico
Publicado: (2018) -
Remarks on Manifolds with Two-Sided Curvature Bounds
por: Kapovitch Vitali, et al.
Publicado: (2021) -
On Weak Super Ricci Flow through Neckpinch
por: Lakzian Sajjad, et al.
Publicado: (2021) -
5-Point CAT(0) Spaces after Tetsu Toyoda
por: Lebedeva Nina, et al.
Publicado: (2021) -
Critical nonlocal Schrödinger-Poisson system on the Heisenberg group
por: Liu Zeyi, et al.
Publicado: (2021)