In vivo Molecular Imaging of Glutamate Carboxypeptidase II Expression in Re-endothelialisation after Percutaneous Balloon Denudation in a Rat Model
Abstract The short- and long-term success of intravascular stents depends on a proper re-endothelialisation after the intervention-induced endothelial denudation. The aim of this study was to evaluate the potential of in vivo molecular imaging of glutamate carboxypeptidase II (GCPII; identical with...
Guardado en:
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0ded07f50df94a769f2016a9245a7218 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract The short- and long-term success of intravascular stents depends on a proper re-endothelialisation after the intervention-induced endothelial denudation. The aim of this study was to evaluate the potential of in vivo molecular imaging of glutamate carboxypeptidase II (GCPII; identical with prostate-specific membrane antigen PSMA) expression as a marker of re-endothelialisation. Fifteen Sprague Dawley rats underwent unilateral balloon angioplasty of the common carotid artery (CCA). Positron emission tomography (PET) using the GCPII-targeting tracer [18F]DCFPyL was performed after 5–21 days (scan 60–120 min post injection). In two animals, the GCPII inhibitor PMPA (23 mg/kg BW) was added to the tracer solution. After PET, both CCAs were removed, dissected, and immunostained with the GCPII specific antibody YPSMA-1. Difference of GCPII expression between both CCAs was established by PCR analysis. [18F]DCFPyL uptake was significantly higher in the ipsilateral compared to the contralateral CCA with an ipsi-/contralateral ratio of 1.67 ± 0.39. PMPA blocked tracer binding. The selective expression of GCPII in endothelial cells of the treated CCA was confirmed by immunohistological staining. PCR analysis verified the site-specific GCPII expression. By using a molecular imaging marker of GCPII expression, we provide the first non-invasive in vivo delineation of re-endothelialisation after angioplasty. |
---|