Detailed Leak Localization in Water Distribution Networks Using Random Forest Classifier and Pipe Segmentation
In this paper, a Random Forest classifier was used to predict leak locations for two differently sized water distribution networks based on pressure sensor measurements. The prediction model is trained on simulated leak scenarios with randomly chosen parameters - leak location, leak size, and base n...
Guardado en:
Autores principales: | Ivana Lucin, Zoran Carija, Sinisa Druzeta, Boze Lucin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0e0e7ae92a1e4d30aed9903890073c38 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Leak-before-break and plastic collapse strength evaluation of stainless steel piping with a part-through notch
por: Masato OGAWA, et al.
Publicado: (2020) -
Random Forest Regression-Based Machine Learning Model for Accurate Estimation of Fluid Flow in Curved Pipes
por: Ganesh N., et al.
Publicado: (2021) -
Simulation of a leak's growth process in water distribution systems based on growth functions
por: Guancheng Guo, et al.
Publicado: (2021) -
Water leak detection based on convolutional neural network using actual leak sounds and the hold-out method
por: Y. W. Nam, et al.
Publicado: (2021) -
Effect of local plastic component on crack opening displacement and on J-integral of a circumferential penetrated crack
por: Hideo MACHIDA, et al.
Publicado: (2020)