Sleep recalibrates homeostatic and associative synaptic plasticity in the human cortex
Sleep deprivation is believed to lead to homeostatic increases in synaptic strength and reduced inducibility of associative LTP, based mainly on findings from animal studies. Here, Kuhn et al. demonstrate similar sleep-dependent synaptic plasticity changes in humans along with altered plasma BDNF le...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2016
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0e1dc550214448b9b2178f6b9c19a22a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Sleep deprivation is believed to lead to homeostatic increases in synaptic strength and reduced inducibility of associative LTP, based mainly on findings from animal studies. Here, Kuhn et al. demonstrate similar sleep-dependent synaptic plasticity changes in humans along with altered plasma BDNF levels. |
---|