2D Quantitative Imaging of Magnetic Nanoparticles by an AC Biosusceptometry Based Scanning Approach and Inverse Problem
The use of magnetic nanoparticles (MNPs) in biomedical applications requires the quantitative knowledge of their quantitative distribution within the body. AC Biosusceptometry (ACB) is a biomagnetic technique recently employed to detect MNPs in vivo by measuring the MNPs response when exposed to an...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0e24cd802af94669bc9de3f7ae9da2b9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:0e24cd802af94669bc9de3f7ae9da2b9 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:0e24cd802af94669bc9de3f7ae9da2b92021-11-11T19:05:14Z2D Quantitative Imaging of Magnetic Nanoparticles by an AC Biosusceptometry Based Scanning Approach and Inverse Problem10.3390/s212170631424-8220https://doaj.org/article/0e24cd802af94669bc9de3f7ae9da2b92021-10-01T00:00:00Zhttps://www.mdpi.com/1424-8220/21/21/7063https://doaj.org/toc/1424-8220The use of magnetic nanoparticles (MNPs) in biomedical applications requires the quantitative knowledge of their quantitative distribution within the body. AC Biosusceptometry (ACB) is a biomagnetic technique recently employed to detect MNPs in vivo by measuring the MNPs response when exposed to an alternate magnetic field. The ACB technique presents some interesting characteristics: non-invasiveness, low operational cost, high portability, and no need for magnetic shielding. ACB conventional methods until now provided only qualitative information about the MNPs’ mapping in small animals. We present a theoretical model and experimentally demonstrate the feasibility of ACB reconstructing 2D quantitative images of MNPs’ distributions. We employed an ACB single-channel scanning approach, measuring at 361 sensor positions, to reconstruct MNPs’ spatial distributions. For this, we established a discrete forward problem and solved the ACB system’s inverse problem. Thus, we were able to determine the positions and quantities of MNPs in a field of view of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5</mn><mo>×</mo><mn>5</mn><mo>×</mo><mn>1</mn><msup><mrow><mrow><mtext> </mtext><mi>cm</mi></mrow></mrow><mn>3</mn></msup></mrow></semantics></math></inline-formula> with good precision and accuracy. The results show the ACB system’s capabilities to reconstruct the quantitative spatial distribution of MNPs with a spatial resolution better than <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mrow><mtext> </mtext><mi>cm</mi></mrow></mrow></semantics></math></inline-formula>, and a sensitivity of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.17</mn><mrow><mtext> </mtext><mi>mg</mi></mrow></mrow></semantics></math></inline-formula> of MNPs fixed in gypsum. These results show the system’s potential for biomedical application of MNPs in several studies, for example, electrochemical-functionalized MNPs for cancer cell targeting, quantitative sensing, and possibly in vivo imaging.Gabriel Gustavo de Albuquerque BiasottiAndre Gonçalves PrósperoMarcelo Dante Tacconi AlvarezMaik LieblLeonardo Antonio PintoGuilherme Augusto SoaresAndris Figueiroa BakuzisOswaldo BaffaFrank WiekhorstJosé Ricardo de Arruda MirandaMDPI AGarticlemagnetic nanoparticlesquantitative imagingAC Biosusceptometryinverse problemChemical technologyTP1-1185ENSensors, Vol 21, Iss 7063, p 7063 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
magnetic nanoparticles quantitative imaging AC Biosusceptometry inverse problem Chemical technology TP1-1185 |
spellingShingle |
magnetic nanoparticles quantitative imaging AC Biosusceptometry inverse problem Chemical technology TP1-1185 Gabriel Gustavo de Albuquerque Biasotti Andre Gonçalves Próspero Marcelo Dante Tacconi Alvarez Maik Liebl Leonardo Antonio Pinto Guilherme Augusto Soares Andris Figueiroa Bakuzis Oswaldo Baffa Frank Wiekhorst José Ricardo de Arruda Miranda 2D Quantitative Imaging of Magnetic Nanoparticles by an AC Biosusceptometry Based Scanning Approach and Inverse Problem |
description |
The use of magnetic nanoparticles (MNPs) in biomedical applications requires the quantitative knowledge of their quantitative distribution within the body. AC Biosusceptometry (ACB) is a biomagnetic technique recently employed to detect MNPs in vivo by measuring the MNPs response when exposed to an alternate magnetic field. The ACB technique presents some interesting characteristics: non-invasiveness, low operational cost, high portability, and no need for magnetic shielding. ACB conventional methods until now provided only qualitative information about the MNPs’ mapping in small animals. We present a theoretical model and experimentally demonstrate the feasibility of ACB reconstructing 2D quantitative images of MNPs’ distributions. We employed an ACB single-channel scanning approach, measuring at 361 sensor positions, to reconstruct MNPs’ spatial distributions. For this, we established a discrete forward problem and solved the ACB system’s inverse problem. Thus, we were able to determine the positions and quantities of MNPs in a field of view of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5</mn><mo>×</mo><mn>5</mn><mo>×</mo><mn>1</mn><msup><mrow><mrow><mtext> </mtext><mi>cm</mi></mrow></mrow><mn>3</mn></msup></mrow></semantics></math></inline-formula> with good precision and accuracy. The results show the ACB system’s capabilities to reconstruct the quantitative spatial distribution of MNPs with a spatial resolution better than <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mrow><mtext> </mtext><mi>cm</mi></mrow></mrow></semantics></math></inline-formula>, and a sensitivity of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.17</mn><mrow><mtext> </mtext><mi>mg</mi></mrow></mrow></semantics></math></inline-formula> of MNPs fixed in gypsum. These results show the system’s potential for biomedical application of MNPs in several studies, for example, electrochemical-functionalized MNPs for cancer cell targeting, quantitative sensing, and possibly in vivo imaging. |
format |
article |
author |
Gabriel Gustavo de Albuquerque Biasotti Andre Gonçalves Próspero Marcelo Dante Tacconi Alvarez Maik Liebl Leonardo Antonio Pinto Guilherme Augusto Soares Andris Figueiroa Bakuzis Oswaldo Baffa Frank Wiekhorst José Ricardo de Arruda Miranda |
author_facet |
Gabriel Gustavo de Albuquerque Biasotti Andre Gonçalves Próspero Marcelo Dante Tacconi Alvarez Maik Liebl Leonardo Antonio Pinto Guilherme Augusto Soares Andris Figueiroa Bakuzis Oswaldo Baffa Frank Wiekhorst José Ricardo de Arruda Miranda |
author_sort |
Gabriel Gustavo de Albuquerque Biasotti |
title |
2D Quantitative Imaging of Magnetic Nanoparticles by an AC Biosusceptometry Based Scanning Approach and Inverse Problem |
title_short |
2D Quantitative Imaging of Magnetic Nanoparticles by an AC Biosusceptometry Based Scanning Approach and Inverse Problem |
title_full |
2D Quantitative Imaging of Magnetic Nanoparticles by an AC Biosusceptometry Based Scanning Approach and Inverse Problem |
title_fullStr |
2D Quantitative Imaging of Magnetic Nanoparticles by an AC Biosusceptometry Based Scanning Approach and Inverse Problem |
title_full_unstemmed |
2D Quantitative Imaging of Magnetic Nanoparticles by an AC Biosusceptometry Based Scanning Approach and Inverse Problem |
title_sort |
2d quantitative imaging of magnetic nanoparticles by an ac biosusceptometry based scanning approach and inverse problem |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/0e24cd802af94669bc9de3f7ae9da2b9 |
work_keys_str_mv |
AT gabrielgustavodealbuquerquebiasotti 2dquantitativeimagingofmagneticnanoparticlesbyanacbiosusceptometrybasedscanningapproachandinverseproblem AT andregoncalvesprospero 2dquantitativeimagingofmagneticnanoparticlesbyanacbiosusceptometrybasedscanningapproachandinverseproblem AT marcelodantetacconialvarez 2dquantitativeimagingofmagneticnanoparticlesbyanacbiosusceptometrybasedscanningapproachandinverseproblem AT maikliebl 2dquantitativeimagingofmagneticnanoparticlesbyanacbiosusceptometrybasedscanningapproachandinverseproblem AT leonardoantoniopinto 2dquantitativeimagingofmagneticnanoparticlesbyanacbiosusceptometrybasedscanningapproachandinverseproblem AT guilhermeaugustosoares 2dquantitativeimagingofmagneticnanoparticlesbyanacbiosusceptometrybasedscanningapproachandinverseproblem AT andrisfigueiroabakuzis 2dquantitativeimagingofmagneticnanoparticlesbyanacbiosusceptometrybasedscanningapproachandinverseproblem AT oswaldobaffa 2dquantitativeimagingofmagneticnanoparticlesbyanacbiosusceptometrybasedscanningapproachandinverseproblem AT frankwiekhorst 2dquantitativeimagingofmagneticnanoparticlesbyanacbiosusceptometrybasedscanningapproachandinverseproblem AT josericardodearrudamiranda 2dquantitativeimagingofmagneticnanoparticlesbyanacbiosusceptometrybasedscanningapproachandinverseproblem |
_version_ |
1718431627346968576 |