2D Quantitative Imaging of Magnetic Nanoparticles by an AC Biosusceptometry Based Scanning Approach and Inverse Problem

The use of magnetic nanoparticles (MNPs) in biomedical applications requires the quantitative knowledge of their quantitative distribution within the body. AC Biosusceptometry (ACB) is a biomagnetic technique recently employed to detect MNPs in vivo by measuring the MNPs response when exposed to an...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Gabriel Gustavo de Albuquerque Biasotti, Andre Gonçalves Próspero, Marcelo Dante Tacconi Alvarez, Maik Liebl, Leonardo Antonio Pinto, Guilherme Augusto Soares, Andris Figueiroa Bakuzis, Oswaldo Baffa, Frank Wiekhorst, José Ricardo de Arruda Miranda
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/0e24cd802af94669bc9de3f7ae9da2b9
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0e24cd802af94669bc9de3f7ae9da2b9
record_format dspace
spelling oai:doaj.org-article:0e24cd802af94669bc9de3f7ae9da2b92021-11-11T19:05:14Z2D Quantitative Imaging of Magnetic Nanoparticles by an AC Biosusceptometry Based Scanning Approach and Inverse Problem10.3390/s212170631424-8220https://doaj.org/article/0e24cd802af94669bc9de3f7ae9da2b92021-10-01T00:00:00Zhttps://www.mdpi.com/1424-8220/21/21/7063https://doaj.org/toc/1424-8220The use of magnetic nanoparticles (MNPs) in biomedical applications requires the quantitative knowledge of their quantitative distribution within the body. AC Biosusceptometry (ACB) is a biomagnetic technique recently employed to detect MNPs in vivo by measuring the MNPs response when exposed to an alternate magnetic field. The ACB technique presents some interesting characteristics: non-invasiveness, low operational cost, high portability, and no need for magnetic shielding. ACB conventional methods until now provided only qualitative information about the MNPs’ mapping in small animals. We present a theoretical model and experimentally demonstrate the feasibility of ACB reconstructing 2D quantitative images of MNPs’ distributions. We employed an ACB single-channel scanning approach, measuring at 361 sensor positions, to reconstruct MNPs’ spatial distributions. For this, we established a discrete forward problem and solved the ACB system’s inverse problem. Thus, we were able to determine the positions and quantities of MNPs in a field of view of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5</mn><mo>×</mo><mn>5</mn><mo>×</mo><mn>1</mn><msup><mrow><mrow><mtext> </mtext><mi>cm</mi></mrow></mrow><mn>3</mn></msup></mrow></semantics></math></inline-formula> with good precision and accuracy. The results show the ACB system’s capabilities to reconstruct the quantitative spatial distribution of MNPs with a spatial resolution better than <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mrow><mtext> </mtext><mi>cm</mi></mrow></mrow></semantics></math></inline-formula>, and a sensitivity of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.17</mn><mrow><mtext> </mtext><mi>mg</mi></mrow></mrow></semantics></math></inline-formula> of MNPs fixed in gypsum. These results show the system’s potential for biomedical application of MNPs in several studies, for example, electrochemical-functionalized MNPs for cancer cell targeting, quantitative sensing, and possibly in vivo imaging.Gabriel Gustavo de Albuquerque BiasottiAndre Gonçalves PrósperoMarcelo Dante Tacconi AlvarezMaik LieblLeonardo Antonio PintoGuilherme Augusto SoaresAndris Figueiroa BakuzisOswaldo BaffaFrank WiekhorstJosé Ricardo de Arruda MirandaMDPI AGarticlemagnetic nanoparticlesquantitative imagingAC Biosusceptometryinverse problemChemical technologyTP1-1185ENSensors, Vol 21, Iss 7063, p 7063 (2021)
institution DOAJ
collection DOAJ
language EN
topic magnetic nanoparticles
quantitative imaging
AC Biosusceptometry
inverse problem
Chemical technology
TP1-1185
spellingShingle magnetic nanoparticles
quantitative imaging
AC Biosusceptometry
inverse problem
Chemical technology
TP1-1185
Gabriel Gustavo de Albuquerque Biasotti
Andre Gonçalves Próspero
Marcelo Dante Tacconi Alvarez
Maik Liebl
Leonardo Antonio Pinto
Guilherme Augusto Soares
Andris Figueiroa Bakuzis
Oswaldo Baffa
Frank Wiekhorst
José Ricardo de Arruda Miranda
2D Quantitative Imaging of Magnetic Nanoparticles by an AC Biosusceptometry Based Scanning Approach and Inverse Problem
description The use of magnetic nanoparticles (MNPs) in biomedical applications requires the quantitative knowledge of their quantitative distribution within the body. AC Biosusceptometry (ACB) is a biomagnetic technique recently employed to detect MNPs in vivo by measuring the MNPs response when exposed to an alternate magnetic field. The ACB technique presents some interesting characteristics: non-invasiveness, low operational cost, high portability, and no need for magnetic shielding. ACB conventional methods until now provided only qualitative information about the MNPs’ mapping in small animals. We present a theoretical model and experimentally demonstrate the feasibility of ACB reconstructing 2D quantitative images of MNPs’ distributions. We employed an ACB single-channel scanning approach, measuring at 361 sensor positions, to reconstruct MNPs’ spatial distributions. For this, we established a discrete forward problem and solved the ACB system’s inverse problem. Thus, we were able to determine the positions and quantities of MNPs in a field of view of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5</mn><mo>×</mo><mn>5</mn><mo>×</mo><mn>1</mn><msup><mrow><mrow><mtext> </mtext><mi>cm</mi></mrow></mrow><mn>3</mn></msup></mrow></semantics></math></inline-formula> with good precision and accuracy. The results show the ACB system’s capabilities to reconstruct the quantitative spatial distribution of MNPs with a spatial resolution better than <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mrow><mtext> </mtext><mi>cm</mi></mrow></mrow></semantics></math></inline-formula>, and a sensitivity of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.17</mn><mrow><mtext> </mtext><mi>mg</mi></mrow></mrow></semantics></math></inline-formula> of MNPs fixed in gypsum. These results show the system’s potential for biomedical application of MNPs in several studies, for example, electrochemical-functionalized MNPs for cancer cell targeting, quantitative sensing, and possibly in vivo imaging.
format article
author Gabriel Gustavo de Albuquerque Biasotti
Andre Gonçalves Próspero
Marcelo Dante Tacconi Alvarez
Maik Liebl
Leonardo Antonio Pinto
Guilherme Augusto Soares
Andris Figueiroa Bakuzis
Oswaldo Baffa
Frank Wiekhorst
José Ricardo de Arruda Miranda
author_facet Gabriel Gustavo de Albuquerque Biasotti
Andre Gonçalves Próspero
Marcelo Dante Tacconi Alvarez
Maik Liebl
Leonardo Antonio Pinto
Guilherme Augusto Soares
Andris Figueiroa Bakuzis
Oswaldo Baffa
Frank Wiekhorst
José Ricardo de Arruda Miranda
author_sort Gabriel Gustavo de Albuquerque Biasotti
title 2D Quantitative Imaging of Magnetic Nanoparticles by an AC Biosusceptometry Based Scanning Approach and Inverse Problem
title_short 2D Quantitative Imaging of Magnetic Nanoparticles by an AC Biosusceptometry Based Scanning Approach and Inverse Problem
title_full 2D Quantitative Imaging of Magnetic Nanoparticles by an AC Biosusceptometry Based Scanning Approach and Inverse Problem
title_fullStr 2D Quantitative Imaging of Magnetic Nanoparticles by an AC Biosusceptometry Based Scanning Approach and Inverse Problem
title_full_unstemmed 2D Quantitative Imaging of Magnetic Nanoparticles by an AC Biosusceptometry Based Scanning Approach and Inverse Problem
title_sort 2d quantitative imaging of magnetic nanoparticles by an ac biosusceptometry based scanning approach and inverse problem
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/0e24cd802af94669bc9de3f7ae9da2b9
work_keys_str_mv AT gabrielgustavodealbuquerquebiasotti 2dquantitativeimagingofmagneticnanoparticlesbyanacbiosusceptometrybasedscanningapproachandinverseproblem
AT andregoncalvesprospero 2dquantitativeimagingofmagneticnanoparticlesbyanacbiosusceptometrybasedscanningapproachandinverseproblem
AT marcelodantetacconialvarez 2dquantitativeimagingofmagneticnanoparticlesbyanacbiosusceptometrybasedscanningapproachandinverseproblem
AT maikliebl 2dquantitativeimagingofmagneticnanoparticlesbyanacbiosusceptometrybasedscanningapproachandinverseproblem
AT leonardoantoniopinto 2dquantitativeimagingofmagneticnanoparticlesbyanacbiosusceptometrybasedscanningapproachandinverseproblem
AT guilhermeaugustosoares 2dquantitativeimagingofmagneticnanoparticlesbyanacbiosusceptometrybasedscanningapproachandinverseproblem
AT andrisfigueiroabakuzis 2dquantitativeimagingofmagneticnanoparticlesbyanacbiosusceptometrybasedscanningapproachandinverseproblem
AT oswaldobaffa 2dquantitativeimagingofmagneticnanoparticlesbyanacbiosusceptometrybasedscanningapproachandinverseproblem
AT frankwiekhorst 2dquantitativeimagingofmagneticnanoparticlesbyanacbiosusceptometrybasedscanningapproachandinverseproblem
AT josericardodearrudamiranda 2dquantitativeimagingofmagneticnanoparticlesbyanacbiosusceptometrybasedscanningapproachandinverseproblem
_version_ 1718431627346968576