Abrupt transitions in time series with uncertainties

Most time series techniques tend to ignore data uncertainties, which results in inaccurate conclusions. Here, Goswami et al. represent time series as a sequence of probability density functions, and reliably detect abrupt transitions by identifying communities in probabilistic recurrence networks.

Guardado en:
Detalles Bibliográficos
Autores principales: Bedartha Goswami, Niklas Boers, Aljoscha Rheinwalt, Norbert Marwan, Jobst Heitzig, Sebastian F. M. Breitenbach, Jürgen Kurths
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/0e3d61b1efc947cfb08752dc628291d8
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Most time series techniques tend to ignore data uncertainties, which results in inaccurate conclusions. Here, Goswami et al. represent time series as a sequence of probability density functions, and reliably detect abrupt transitions by identifying communities in probabilistic recurrence networks.