Abrupt transitions in time series with uncertainties
Most time series techniques tend to ignore data uncertainties, which results in inaccurate conclusions. Here, Goswami et al. represent time series as a sequence of probability density functions, and reliably detect abrupt transitions by identifying communities in probabilistic recurrence networks.
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0e3d61b1efc947cfb08752dc628291d8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:0e3d61b1efc947cfb08752dc628291d8 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:0e3d61b1efc947cfb08752dc628291d82021-12-02T17:33:16ZAbrupt transitions in time series with uncertainties10.1038/s41467-017-02456-62041-1723https://doaj.org/article/0e3d61b1efc947cfb08752dc628291d82018-01-01T00:00:00Zhttps://doi.org/10.1038/s41467-017-02456-6https://doaj.org/toc/2041-1723Most time series techniques tend to ignore data uncertainties, which results in inaccurate conclusions. Here, Goswami et al. represent time series as a sequence of probability density functions, and reliably detect abrupt transitions by identifying communities in probabilistic recurrence networks.Bedartha GoswamiNiklas BoersAljoscha RheinwaltNorbert MarwanJobst HeitzigSebastian F. M. BreitenbachJürgen KurthsNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-10 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Bedartha Goswami Niklas Boers Aljoscha Rheinwalt Norbert Marwan Jobst Heitzig Sebastian F. M. Breitenbach Jürgen Kurths Abrupt transitions in time series with uncertainties |
description |
Most time series techniques tend to ignore data uncertainties, which results in inaccurate conclusions. Here, Goswami et al. represent time series as a sequence of probability density functions, and reliably detect abrupt transitions by identifying communities in probabilistic recurrence networks. |
format |
article |
author |
Bedartha Goswami Niklas Boers Aljoscha Rheinwalt Norbert Marwan Jobst Heitzig Sebastian F. M. Breitenbach Jürgen Kurths |
author_facet |
Bedartha Goswami Niklas Boers Aljoscha Rheinwalt Norbert Marwan Jobst Heitzig Sebastian F. M. Breitenbach Jürgen Kurths |
author_sort |
Bedartha Goswami |
title |
Abrupt transitions in time series with uncertainties |
title_short |
Abrupt transitions in time series with uncertainties |
title_full |
Abrupt transitions in time series with uncertainties |
title_fullStr |
Abrupt transitions in time series with uncertainties |
title_full_unstemmed |
Abrupt transitions in time series with uncertainties |
title_sort |
abrupt transitions in time series with uncertainties |
publisher |
Nature Portfolio |
publishDate |
2018 |
url |
https://doaj.org/article/0e3d61b1efc947cfb08752dc628291d8 |
work_keys_str_mv |
AT bedarthagoswami abrupttransitionsintimeserieswithuncertainties AT niklasboers abrupttransitionsintimeserieswithuncertainties AT aljoscharheinwalt abrupttransitionsintimeserieswithuncertainties AT norbertmarwan abrupttransitionsintimeserieswithuncertainties AT jobstheitzig abrupttransitionsintimeserieswithuncertainties AT sebastianfmbreitenbach abrupttransitionsintimeserieswithuncertainties AT jurgenkurths abrupttransitionsintimeserieswithuncertainties |
_version_ |
1718379982881816576 |