Abrupt transitions in time series with uncertainties

Most time series techniques tend to ignore data uncertainties, which results in inaccurate conclusions. Here, Goswami et al. represent time series as a sequence of probability density functions, and reliably detect abrupt transitions by identifying communities in probabilistic recurrence networks.

Guardado en:
Detalles Bibliográficos
Autores principales: Bedartha Goswami, Niklas Boers, Aljoscha Rheinwalt, Norbert Marwan, Jobst Heitzig, Sebastian F. M. Breitenbach, Jürgen Kurths
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/0e3d61b1efc947cfb08752dc628291d8
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0e3d61b1efc947cfb08752dc628291d8
record_format dspace
spelling oai:doaj.org-article:0e3d61b1efc947cfb08752dc628291d82021-12-02T17:33:16ZAbrupt transitions in time series with uncertainties10.1038/s41467-017-02456-62041-1723https://doaj.org/article/0e3d61b1efc947cfb08752dc628291d82018-01-01T00:00:00Zhttps://doi.org/10.1038/s41467-017-02456-6https://doaj.org/toc/2041-1723Most time series techniques tend to ignore data uncertainties, which results in inaccurate conclusions. Here, Goswami et al. represent time series as a sequence of probability density functions, and reliably detect abrupt transitions by identifying communities in probabilistic recurrence networks.Bedartha GoswamiNiklas BoersAljoscha RheinwaltNorbert MarwanJobst HeitzigSebastian F. M. BreitenbachJürgen KurthsNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-10 (2018)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Bedartha Goswami
Niklas Boers
Aljoscha Rheinwalt
Norbert Marwan
Jobst Heitzig
Sebastian F. M. Breitenbach
Jürgen Kurths
Abrupt transitions in time series with uncertainties
description Most time series techniques tend to ignore data uncertainties, which results in inaccurate conclusions. Here, Goswami et al. represent time series as a sequence of probability density functions, and reliably detect abrupt transitions by identifying communities in probabilistic recurrence networks.
format article
author Bedartha Goswami
Niklas Boers
Aljoscha Rheinwalt
Norbert Marwan
Jobst Heitzig
Sebastian F. M. Breitenbach
Jürgen Kurths
author_facet Bedartha Goswami
Niklas Boers
Aljoscha Rheinwalt
Norbert Marwan
Jobst Heitzig
Sebastian F. M. Breitenbach
Jürgen Kurths
author_sort Bedartha Goswami
title Abrupt transitions in time series with uncertainties
title_short Abrupt transitions in time series with uncertainties
title_full Abrupt transitions in time series with uncertainties
title_fullStr Abrupt transitions in time series with uncertainties
title_full_unstemmed Abrupt transitions in time series with uncertainties
title_sort abrupt transitions in time series with uncertainties
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/0e3d61b1efc947cfb08752dc628291d8
work_keys_str_mv AT bedarthagoswami abrupttransitionsintimeserieswithuncertainties
AT niklasboers abrupttransitionsintimeserieswithuncertainties
AT aljoscharheinwalt abrupttransitionsintimeserieswithuncertainties
AT norbertmarwan abrupttransitionsintimeserieswithuncertainties
AT jobstheitzig abrupttransitionsintimeserieswithuncertainties
AT sebastianfmbreitenbach abrupttransitionsintimeserieswithuncertainties
AT jurgenkurths abrupttransitionsintimeserieswithuncertainties
_version_ 1718379982881816576