Proteasome Inhibitors and Their Pharmacokinetics, Pharmacodynamics, and Metabolism
The proteasome is responsible for mediating intracellular protein degradation and regulating cellular function with impact on tumor and immune effector cell biology. The proteasome is found predominantly in two forms, the constitutive proteasome and the immunoproteasome. It has been validated as a t...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0e5977f856364f8c9a66879a821db2e7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | The proteasome is responsible for mediating intracellular protein degradation and regulating cellular function with impact on tumor and immune effector cell biology. The proteasome is found predominantly in two forms, the constitutive proteasome and the immunoproteasome. It has been validated as a therapeutic drug target through regulatory approval with 2 distinct chemical classes of small molecular inhibitors (boronic acid derivatives and peptide epoxyketones), including 3 compounds, bortezomib (VELCADE), carfilzomib (KYPROLIS), and ixazomib (NINLARO), for use in the treatment of the plasma cell neoplasm, multiple myeloma. Additionally, a selective inhibitor of immunoproteasome (KZR-616) is being developed for the treatment of autoimmune diseases. Here, we compare and contrast the pharmacokinetics (PK), pharmacodynamics (PD), and metabolism of these 2 classes of compounds in preclinical models and clinical studies. The distinct metabolism of peptide epoxyketones, which is primarily mediated by microsomal epoxide hydrolase, is highlighted and postulated as a favorable property for the development of this class of compound in chronic conditions. |
---|