Fault Diagnosis of Electric Motors Using Deep Learning Algorithms and Its Application: A Review
Electric motors are used extensively in numerous industries, and their failure can result not only in machine damage but also a slew of other issues, such as financial loss, injuries, etc. As a result, there is a significant scope to use robust fault diagnosis technology. In recent years, interestin...
Enregistré dans:
Auteurs principaux: | Yuanyuan Yang, Md Muhie Menul Haque, Dongling Bai, Wei Tang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/0e5aae5a74ea4ff79792e1b994efad83 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A Novel Lidar Signal Denoising Method Based on Convolutional Autoencoding Deep Learning Neural Network
par: Minghuan Hu, et autres
Publié: (2021) -
Review of Image Classification Algorithms Based on Convolutional Neural Networks
par: Leiyu Chen, et autres
Publié: (2021) -
A Convolutional Autoencoder Topology for Classification in High-Dimensional Noisy Image Datasets
par: Emmanuel Pintelas, et autres
Publié: (2021) -
Using a Hybrid Neural Network Model DCNN–LSTM for Image-Based Nitrogen Nutrition Diagnosis in Muskmelon
par: Liying Chang, et autres
Publié: (2021) -
Intelligent Fault Diagnosis Method of Wind Turbines Planetary Gearboxes Based on a Multi-Scale Dense Fusion Network
par: Xinghua Huang, et autres
Publié: (2021)