Dynamic Dystroglycan Complexes Mediate Cell Entry of Lassa Virus

ABSTRACT Recognition of functional receptors by viruses is a key determinant for their host range, tissue tropism, and disease potential. The highly pathogenic Lassa virus (LASV) currently represents one of the most important emerging pathogens. The major cellular receptor for LASV in human cells is...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Antonio Herrador, Chiara Fedeli, Emilia Radulovic, Kevin P. Campbell, Hector Moreno, Gisa Gerold, Stefan Kunz
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2019
Materias:
Acceso en línea:https://doaj.org/article/0e5cae2956054cb5a743f7c4d33df33a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0e5cae2956054cb5a743f7c4d33df33a
record_format dspace
spelling oai:doaj.org-article:0e5cae2956054cb5a743f7c4d33df33a2021-11-15T15:55:26ZDynamic Dystroglycan Complexes Mediate Cell Entry of Lassa Virus10.1128/mBio.02869-182150-7511https://doaj.org/article/0e5cae2956054cb5a743f7c4d33df33a2019-04-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.02869-18https://doaj.org/toc/2150-7511ABSTRACT Recognition of functional receptors by viruses is a key determinant for their host range, tissue tropism, and disease potential. The highly pathogenic Lassa virus (LASV) currently represents one of the most important emerging pathogens. The major cellular receptor for LASV in human cells is the ubiquitously expressed and evolutionary highly conserved extracellular matrix receptor dystroglycan (DG). In the host, DG interacts with many cellular proteins in a tissue-specific manner. The resulting distinct supramolecular complexes likely represent the functional units for viral entry, and preexisting protein-protein interactions may critically influence DG’s function in productive viral entry. Using an unbiased shotgun proteomic approach, we define the largely unknown molecular composition of DG complexes present in highly susceptible epithelial cells that represent important targets for LASV during viral transmission. We further show that the specific composition of cellular DG complexes can affect DG’s function in receptor-mediated endocytosis of the virus. Under steady-state conditions, epithelial DG complexes underwent rapid turnover via an endocytic pathway that shared some characteristics with DG-mediated LASV entry. However, compared to steady-state uptake of DG, LASV entry via DG occurred faster and critically depended on additional signaling by receptor tyrosine kinases and the downstream effector p21-activating kinase. In sum, we show that the specific molecular composition of DG complexes in susceptible cells is a determinant for productive virus entry and that the pathogen can manipulate the existing DG-linked endocytic pathway. This highlights another level of complexity of virus-receptor interaction and provides possible cellular targets for therapeutic antiviral intervention. IMPORTANCE Recognition of cellular receptors allows emerging viruses to break species barriers and is an important determinant for their disease potential. Many virus receptors have complex tissue-specific interactomes, and preexisting protein-protein interactions may influence their function. Combining shotgun proteomics with a biochemical approach, we characterize the molecular composition of the functional receptor complexes used by the highly pathogenic Lassa virus (LASV) to invade susceptible human cells. We show that the specific composition of the receptor complexes affects productive entry of the virus, providing proof-of-concept. In uninfected cells, these functional receptor complexes undergo dynamic turnover involving an endocytic pathway that shares some characteristics with viral entry. However, steady-state receptor uptake and virus endocytosis critically differ in kinetics and underlying signaling, indicating that the pathogen can manipulate the receptor complex according to its needs. Our study highlights a remarkable complexity of LASV-receptor interaction and identifies possible targets for therapeutic antiviral intervention.Antonio HerradorChiara FedeliEmilia RadulovicKevin P. CampbellHector MorenoGisa GeroldStefan KunzAmerican Society for Microbiologyarticlearenavirusproteomicstropismviral entryvirus receptorMicrobiologyQR1-502ENmBio, Vol 10, Iss 2 (2019)
institution DOAJ
collection DOAJ
language EN
topic arenavirus
proteomics
tropism
viral entry
virus receptor
Microbiology
QR1-502
spellingShingle arenavirus
proteomics
tropism
viral entry
virus receptor
Microbiology
QR1-502
Antonio Herrador
Chiara Fedeli
Emilia Radulovic
Kevin P. Campbell
Hector Moreno
Gisa Gerold
Stefan Kunz
Dynamic Dystroglycan Complexes Mediate Cell Entry of Lassa Virus
description ABSTRACT Recognition of functional receptors by viruses is a key determinant for their host range, tissue tropism, and disease potential. The highly pathogenic Lassa virus (LASV) currently represents one of the most important emerging pathogens. The major cellular receptor for LASV in human cells is the ubiquitously expressed and evolutionary highly conserved extracellular matrix receptor dystroglycan (DG). In the host, DG interacts with many cellular proteins in a tissue-specific manner. The resulting distinct supramolecular complexes likely represent the functional units for viral entry, and preexisting protein-protein interactions may critically influence DG’s function in productive viral entry. Using an unbiased shotgun proteomic approach, we define the largely unknown molecular composition of DG complexes present in highly susceptible epithelial cells that represent important targets for LASV during viral transmission. We further show that the specific composition of cellular DG complexes can affect DG’s function in receptor-mediated endocytosis of the virus. Under steady-state conditions, epithelial DG complexes underwent rapid turnover via an endocytic pathway that shared some characteristics with DG-mediated LASV entry. However, compared to steady-state uptake of DG, LASV entry via DG occurred faster and critically depended on additional signaling by receptor tyrosine kinases and the downstream effector p21-activating kinase. In sum, we show that the specific molecular composition of DG complexes in susceptible cells is a determinant for productive virus entry and that the pathogen can manipulate the existing DG-linked endocytic pathway. This highlights another level of complexity of virus-receptor interaction and provides possible cellular targets for therapeutic antiviral intervention. IMPORTANCE Recognition of cellular receptors allows emerging viruses to break species barriers and is an important determinant for their disease potential. Many virus receptors have complex tissue-specific interactomes, and preexisting protein-protein interactions may influence their function. Combining shotgun proteomics with a biochemical approach, we characterize the molecular composition of the functional receptor complexes used by the highly pathogenic Lassa virus (LASV) to invade susceptible human cells. We show that the specific composition of the receptor complexes affects productive entry of the virus, providing proof-of-concept. In uninfected cells, these functional receptor complexes undergo dynamic turnover involving an endocytic pathway that shares some characteristics with viral entry. However, steady-state receptor uptake and virus endocytosis critically differ in kinetics and underlying signaling, indicating that the pathogen can manipulate the receptor complex according to its needs. Our study highlights a remarkable complexity of LASV-receptor interaction and identifies possible targets for therapeutic antiviral intervention.
format article
author Antonio Herrador
Chiara Fedeli
Emilia Radulovic
Kevin P. Campbell
Hector Moreno
Gisa Gerold
Stefan Kunz
author_facet Antonio Herrador
Chiara Fedeli
Emilia Radulovic
Kevin P. Campbell
Hector Moreno
Gisa Gerold
Stefan Kunz
author_sort Antonio Herrador
title Dynamic Dystroglycan Complexes Mediate Cell Entry of Lassa Virus
title_short Dynamic Dystroglycan Complexes Mediate Cell Entry of Lassa Virus
title_full Dynamic Dystroglycan Complexes Mediate Cell Entry of Lassa Virus
title_fullStr Dynamic Dystroglycan Complexes Mediate Cell Entry of Lassa Virus
title_full_unstemmed Dynamic Dystroglycan Complexes Mediate Cell Entry of Lassa Virus
title_sort dynamic dystroglycan complexes mediate cell entry of lassa virus
publisher American Society for Microbiology
publishDate 2019
url https://doaj.org/article/0e5cae2956054cb5a743f7c4d33df33a
work_keys_str_mv AT antonioherrador dynamicdystroglycancomplexesmediatecellentryoflassavirus
AT chiarafedeli dynamicdystroglycancomplexesmediatecellentryoflassavirus
AT emiliaradulovic dynamicdystroglycancomplexesmediatecellentryoflassavirus
AT kevinpcampbell dynamicdystroglycancomplexesmediatecellentryoflassavirus
AT hectormoreno dynamicdystroglycancomplexesmediatecellentryoflassavirus
AT gisagerold dynamicdystroglycancomplexesmediatecellentryoflassavirus
AT stefankunz dynamicdystroglycancomplexesmediatecellentryoflassavirus
_version_ 1718427134406426624