A machine learning toolkit for genetic engineering attribution to facilitate biosecurity
The potential for accidental or deliberate misuse of biotechnology is of concern for international biosecurity. Here the authors apply machine learning to DNA sequences and associated phenotypic data to facilitate genetic engineering attribution and identify country-of-origin and ancestral lab of en...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0e70fbf60f804bed8ad5841f3c3b9f29 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | The potential for accidental or deliberate misuse of biotechnology is of concern for international biosecurity. Here the authors apply machine learning to DNA sequences and associated phenotypic data to facilitate genetic engineering attribution and identify country-of-origin and ancestral lab of engineered DNA sequences. |
---|