A machine learning toolkit for genetic engineering attribution to facilitate biosecurity

The potential for accidental or deliberate misuse of biotechnology is of concern for international biosecurity. Here the authors apply machine learning to DNA sequences and associated phenotypic data to facilitate genetic engineering attribution and identify country-of-origin and ancestral lab of en...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ethan C. Alley, Miles Turpin, Andrew Bo Liu, Taylor Kulp-McDowall, Jacob Swett, Rey Edison, Stephen E. Von Stetina, George M. Church, Kevin M. Esvelt
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/0e70fbf60f804bed8ad5841f3c3b9f29
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The potential for accidental or deliberate misuse of biotechnology is of concern for international biosecurity. Here the authors apply machine learning to DNA sequences and associated phenotypic data to facilitate genetic engineering attribution and identify country-of-origin and ancestral lab of engineered DNA sequences.