A machine learning toolkit for genetic engineering attribution to facilitate biosecurity

The potential for accidental or deliberate misuse of biotechnology is of concern for international biosecurity. Here the authors apply machine learning to DNA sequences and associated phenotypic data to facilitate genetic engineering attribution and identify country-of-origin and ancestral lab of en...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ethan C. Alley, Miles Turpin, Andrew Bo Liu, Taylor Kulp-McDowall, Jacob Swett, Rey Edison, Stephen E. Von Stetina, George M. Church, Kevin M. Esvelt
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/0e70fbf60f804bed8ad5841f3c3b9f29
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0e70fbf60f804bed8ad5841f3c3b9f29
record_format dspace
spelling oai:doaj.org-article:0e70fbf60f804bed8ad5841f3c3b9f292021-12-02T14:16:05ZA machine learning toolkit for genetic engineering attribution to facilitate biosecurity10.1038/s41467-020-19612-02041-1723https://doaj.org/article/0e70fbf60f804bed8ad5841f3c3b9f292020-12-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-19612-0https://doaj.org/toc/2041-1723The potential for accidental or deliberate misuse of biotechnology is of concern for international biosecurity. Here the authors apply machine learning to DNA sequences and associated phenotypic data to facilitate genetic engineering attribution and identify country-of-origin and ancestral lab of engineered DNA sequences.Ethan C. AlleyMiles TurpinAndrew Bo LiuTaylor Kulp-McDowallJacob SwettRey EdisonStephen E. Von StetinaGeorge M. ChurchKevin M. EsveltNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-12 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Ethan C. Alley
Miles Turpin
Andrew Bo Liu
Taylor Kulp-McDowall
Jacob Swett
Rey Edison
Stephen E. Von Stetina
George M. Church
Kevin M. Esvelt
A machine learning toolkit for genetic engineering attribution to facilitate biosecurity
description The potential for accidental or deliberate misuse of biotechnology is of concern for international biosecurity. Here the authors apply machine learning to DNA sequences and associated phenotypic data to facilitate genetic engineering attribution and identify country-of-origin and ancestral lab of engineered DNA sequences.
format article
author Ethan C. Alley
Miles Turpin
Andrew Bo Liu
Taylor Kulp-McDowall
Jacob Swett
Rey Edison
Stephen E. Von Stetina
George M. Church
Kevin M. Esvelt
author_facet Ethan C. Alley
Miles Turpin
Andrew Bo Liu
Taylor Kulp-McDowall
Jacob Swett
Rey Edison
Stephen E. Von Stetina
George M. Church
Kevin M. Esvelt
author_sort Ethan C. Alley
title A machine learning toolkit for genetic engineering attribution to facilitate biosecurity
title_short A machine learning toolkit for genetic engineering attribution to facilitate biosecurity
title_full A machine learning toolkit for genetic engineering attribution to facilitate biosecurity
title_fullStr A machine learning toolkit for genetic engineering attribution to facilitate biosecurity
title_full_unstemmed A machine learning toolkit for genetic engineering attribution to facilitate biosecurity
title_sort machine learning toolkit for genetic engineering attribution to facilitate biosecurity
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/0e70fbf60f804bed8ad5841f3c3b9f29
work_keys_str_mv AT ethancalley amachinelearningtoolkitforgeneticengineeringattributiontofacilitatebiosecurity
AT milesturpin amachinelearningtoolkitforgeneticengineeringattributiontofacilitatebiosecurity
AT andrewboliu amachinelearningtoolkitforgeneticengineeringattributiontofacilitatebiosecurity
AT taylorkulpmcdowall amachinelearningtoolkitforgeneticengineeringattributiontofacilitatebiosecurity
AT jacobswett amachinelearningtoolkitforgeneticengineeringattributiontofacilitatebiosecurity
AT reyedison amachinelearningtoolkitforgeneticengineeringattributiontofacilitatebiosecurity
AT stephenevonstetina amachinelearningtoolkitforgeneticengineeringattributiontofacilitatebiosecurity
AT georgemchurch amachinelearningtoolkitforgeneticengineeringattributiontofacilitatebiosecurity
AT kevinmesvelt amachinelearningtoolkitforgeneticengineeringattributiontofacilitatebiosecurity
AT ethancalley machinelearningtoolkitforgeneticengineeringattributiontofacilitatebiosecurity
AT milesturpin machinelearningtoolkitforgeneticengineeringattributiontofacilitatebiosecurity
AT andrewboliu machinelearningtoolkitforgeneticengineeringattributiontofacilitatebiosecurity
AT taylorkulpmcdowall machinelearningtoolkitforgeneticengineeringattributiontofacilitatebiosecurity
AT jacobswett machinelearningtoolkitforgeneticengineeringattributiontofacilitatebiosecurity
AT reyedison machinelearningtoolkitforgeneticengineeringattributiontofacilitatebiosecurity
AT stephenevonstetina machinelearningtoolkitforgeneticengineeringattributiontofacilitatebiosecurity
AT georgemchurch machinelearningtoolkitforgeneticengineeringattributiontofacilitatebiosecurity
AT kevinmesvelt machinelearningtoolkitforgeneticengineeringattributiontofacilitatebiosecurity
_version_ 1718391707506049024