A machine learning toolkit for genetic engineering attribution to facilitate biosecurity
The potential for accidental or deliberate misuse of biotechnology is of concern for international biosecurity. Here the authors apply machine learning to DNA sequences and associated phenotypic data to facilitate genetic engineering attribution and identify country-of-origin and ancestral lab of en...
Guardado en:
Autores principales: | Ethan C. Alley, Miles Turpin, Andrew Bo Liu, Taylor Kulp-McDowall, Jacob Swett, Rey Edison, Stephen E. Von Stetina, George M. Church, Kevin M. Esvelt |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0e70fbf60f804bed8ad5841f3c3b9f29 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
The biosecurity benefits of genetic engineering attribution
por: Gregory Lewis, et al.
Publicado: (2020) - Journal of biosecurity, biosafety and biodefense law
-
Diffusion of flue gas desulfurization reveals barriers and opportunities for carbon capture and storage
por: Stijn van Ewijk, et al.
Publicado: (2020) -
PRACTICES OF BIOSECURITY MEASURES AND THEIR CONSEQUENCES ON POULTRY FARMS IN ABIDJAN DISTRICT
por: Gblossi Bernadette GOUALIE, et al.
Publicado: (2020) -
Biosecurity on cattle farms: a study in north-west England.
por: Marnie L Brennan, et al.
Publicado: (2012)