Quantum correlation of qubit-reservoir system in dissipative environments

Abstract In this work, the dynamics of quantum correlation (QC) in terms of geometric discord and its transfer coupled with dissipative reservoirs are investigated. Taken two canonical cases where the qubits of interest are initially prepared in extended Werner-like state and W-like states into acco...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Tao Wu, Jiadong Shi, Lizhi Yu, Juan He, Liu Ye
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/0e82c2cb59a9452c88921d5f02161b0e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract In this work, the dynamics of quantum correlation (QC) in terms of geometric discord and its transfer coupled with dissipative reservoirs are investigated. Taken two canonical cases where the qubits of interest are initially prepared in extended Werner-like state and W-like states into account, we specifically reveal the dynamical behaviors of the geometric discord as each qubit locally interacts with its surrounding infinite degree-of-freedom reservoir. In the scenarios, the short-term and long-term dynamics of the geometric discord for the qubit- and reservoir-subsystem as well as its transfers between them are observed detailedly. It turns out that the geometric discord of qubit-subsystem decays asymptotically to zero while the counterpart of reservoir-subsystem can revive from time t = 0 to steady value, which sheds light on a transfer of the discord from the qubit-subsystem to the corresponding reservoir-subsystem.