Nanocrystalline Cellulose Supported MnO<sub>2</sub> Composite Materials for High-Performance Lithium-Ion Batteries
The rate capability and poor cycling stability of lithium-ion batteries (LIBs) are predominantly caused by the large volume expansion upon cycling and poor electrical conductivity of manganese dioxide (MnO<sub>2</sub>), which also exhibits the highest theoretical capacity among manganese...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0ea4141f39304c6ca357933d28b67274 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:0ea4141f39304c6ca357933d28b67274 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:0ea4141f39304c6ca357933d28b672742021-11-11T18:09:07ZNanocrystalline Cellulose Supported MnO<sub>2</sub> Composite Materials for High-Performance Lithium-Ion Batteries10.3390/ma142166191996-1944https://doaj.org/article/0ea4141f39304c6ca357933d28b672742021-11-01T00:00:00Zhttps://www.mdpi.com/1996-1944/14/21/6619https://doaj.org/toc/1996-1944The rate capability and poor cycling stability of lithium-ion batteries (LIBs) are predominantly caused by the large volume expansion upon cycling and poor electrical conductivity of manganese dioxide (MnO<sub>2</sub>), which also exhibits the highest theoretical capacity among manganese oxides. In this study, a nanocomposite of nanosized MnO<sub>2</sub> and pyrolyzed nanocrystalline cellulose (CNC) was prepared with high electrical conductivity to enhance the electrochemical performance of LIBs. The nanocomposite electrode showed an initial discharge capacity of 1302 mAh g<sup>−1</sup> at 100 mA g<sup>−1</sup> and exhibited a high discharge capacity of 305 mAh g<sup>−1</sup> after 1000 cycles. Moreover, the MnO<sub>2</sub>-CNC nanocomposite delivered a good rate capability of up to 10 A g<sup>−1</sup> and accommodated the large volume change upon repeated cycling tests.Quang Nhat TranThuan Ngoc VoIl Tae KimJi Hyeon KimDal Ho LeeSang Joon ParkMDPI AGarticlemanganese dioxidenanocrystalline celluloselithium-ion batteriesnanocompositedischarge capacityTechnologyTElectrical engineering. Electronics. Nuclear engineeringTK1-9971Engineering (General). Civil engineering (General)TA1-2040MicroscopyQH201-278.5Descriptive and experimental mechanicsQC120-168.85ENMaterials, Vol 14, Iss 6619, p 6619 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
manganese dioxide nanocrystalline cellulose lithium-ion batteries nanocomposite discharge capacity Technology T Electrical engineering. Electronics. Nuclear engineering TK1-9971 Engineering (General). Civil engineering (General) TA1-2040 Microscopy QH201-278.5 Descriptive and experimental mechanics QC120-168.85 |
spellingShingle |
manganese dioxide nanocrystalline cellulose lithium-ion batteries nanocomposite discharge capacity Technology T Electrical engineering. Electronics. Nuclear engineering TK1-9971 Engineering (General). Civil engineering (General) TA1-2040 Microscopy QH201-278.5 Descriptive and experimental mechanics QC120-168.85 Quang Nhat Tran Thuan Ngoc Vo Il Tae Kim Ji Hyeon Kim Dal Ho Lee Sang Joon Park Nanocrystalline Cellulose Supported MnO<sub>2</sub> Composite Materials for High-Performance Lithium-Ion Batteries |
description |
The rate capability and poor cycling stability of lithium-ion batteries (LIBs) are predominantly caused by the large volume expansion upon cycling and poor electrical conductivity of manganese dioxide (MnO<sub>2</sub>), which also exhibits the highest theoretical capacity among manganese oxides. In this study, a nanocomposite of nanosized MnO<sub>2</sub> and pyrolyzed nanocrystalline cellulose (CNC) was prepared with high electrical conductivity to enhance the electrochemical performance of LIBs. The nanocomposite electrode showed an initial discharge capacity of 1302 mAh g<sup>−1</sup> at 100 mA g<sup>−1</sup> and exhibited a high discharge capacity of 305 mAh g<sup>−1</sup> after 1000 cycles. Moreover, the MnO<sub>2</sub>-CNC nanocomposite delivered a good rate capability of up to 10 A g<sup>−1</sup> and accommodated the large volume change upon repeated cycling tests. |
format |
article |
author |
Quang Nhat Tran Thuan Ngoc Vo Il Tae Kim Ji Hyeon Kim Dal Ho Lee Sang Joon Park |
author_facet |
Quang Nhat Tran Thuan Ngoc Vo Il Tae Kim Ji Hyeon Kim Dal Ho Lee Sang Joon Park |
author_sort |
Quang Nhat Tran |
title |
Nanocrystalline Cellulose Supported MnO<sub>2</sub> Composite Materials for High-Performance Lithium-Ion Batteries |
title_short |
Nanocrystalline Cellulose Supported MnO<sub>2</sub> Composite Materials for High-Performance Lithium-Ion Batteries |
title_full |
Nanocrystalline Cellulose Supported MnO<sub>2</sub> Composite Materials for High-Performance Lithium-Ion Batteries |
title_fullStr |
Nanocrystalline Cellulose Supported MnO<sub>2</sub> Composite Materials for High-Performance Lithium-Ion Batteries |
title_full_unstemmed |
Nanocrystalline Cellulose Supported MnO<sub>2</sub> Composite Materials for High-Performance Lithium-Ion Batteries |
title_sort |
nanocrystalline cellulose supported mno<sub>2</sub> composite materials for high-performance lithium-ion batteries |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/0ea4141f39304c6ca357933d28b67274 |
work_keys_str_mv |
AT quangnhattran nanocrystallinecellulosesupportedmnosub2subcompositematerialsforhighperformancelithiumionbatteries AT thuanngocvo nanocrystallinecellulosesupportedmnosub2subcompositematerialsforhighperformancelithiumionbatteries AT iltaekim nanocrystallinecellulosesupportedmnosub2subcompositematerialsforhighperformancelithiumionbatteries AT jihyeonkim nanocrystallinecellulosesupportedmnosub2subcompositematerialsforhighperformancelithiumionbatteries AT dalholee nanocrystallinecellulosesupportedmnosub2subcompositematerialsforhighperformancelithiumionbatteries AT sangjoonpark nanocrystallinecellulosesupportedmnosub2subcompositematerialsforhighperformancelithiumionbatteries |
_version_ |
1718431924664401920 |