Nanocrystalline Cellulose Supported MnO<sub>2</sub> Composite Materials for High-Performance Lithium-Ion Batteries

The rate capability and poor cycling stability of lithium-ion batteries (LIBs) are predominantly caused by the large volume expansion upon cycling and poor electrical conductivity of manganese dioxide (MnO<sub>2</sub>), which also exhibits the highest theoretical capacity among manganese...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Quang Nhat Tran, Thuan Ngoc Vo, Il Tae Kim, Ji Hyeon Kim, Dal Ho Lee, Sang Joon Park
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
T
Acceso en línea:https://doaj.org/article/0ea4141f39304c6ca357933d28b67274
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0ea4141f39304c6ca357933d28b67274
record_format dspace
spelling oai:doaj.org-article:0ea4141f39304c6ca357933d28b672742021-11-11T18:09:07ZNanocrystalline Cellulose Supported MnO<sub>2</sub> Composite Materials for High-Performance Lithium-Ion Batteries10.3390/ma142166191996-1944https://doaj.org/article/0ea4141f39304c6ca357933d28b672742021-11-01T00:00:00Zhttps://www.mdpi.com/1996-1944/14/21/6619https://doaj.org/toc/1996-1944The rate capability and poor cycling stability of lithium-ion batteries (LIBs) are predominantly caused by the large volume expansion upon cycling and poor electrical conductivity of manganese dioxide (MnO<sub>2</sub>), which also exhibits the highest theoretical capacity among manganese oxides. In this study, a nanocomposite of nanosized MnO<sub>2</sub> and pyrolyzed nanocrystalline cellulose (CNC) was prepared with high electrical conductivity to enhance the electrochemical performance of LIBs. The nanocomposite electrode showed an initial discharge capacity of 1302 mAh g<sup>−1</sup> at 100 mA g<sup>−1</sup> and exhibited a high discharge capacity of 305 mAh g<sup>−1</sup> after 1000 cycles. Moreover, the MnO<sub>2</sub>-CNC nanocomposite delivered a good rate capability of up to 10 A g<sup>−1</sup> and accommodated the large volume change upon repeated cycling tests.Quang Nhat TranThuan Ngoc VoIl Tae KimJi Hyeon KimDal Ho LeeSang Joon ParkMDPI AGarticlemanganese dioxidenanocrystalline celluloselithium-ion batteriesnanocompositedischarge capacityTechnologyTElectrical engineering. Electronics. Nuclear engineeringTK1-9971Engineering (General). Civil engineering (General)TA1-2040MicroscopyQH201-278.5Descriptive and experimental mechanicsQC120-168.85ENMaterials, Vol 14, Iss 6619, p 6619 (2021)
institution DOAJ
collection DOAJ
language EN
topic manganese dioxide
nanocrystalline cellulose
lithium-ion batteries
nanocomposite
discharge capacity
Technology
T
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
Engineering (General). Civil engineering (General)
TA1-2040
Microscopy
QH201-278.5
Descriptive and experimental mechanics
QC120-168.85
spellingShingle manganese dioxide
nanocrystalline cellulose
lithium-ion batteries
nanocomposite
discharge capacity
Technology
T
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
Engineering (General). Civil engineering (General)
TA1-2040
Microscopy
QH201-278.5
Descriptive and experimental mechanics
QC120-168.85
Quang Nhat Tran
Thuan Ngoc Vo
Il Tae Kim
Ji Hyeon Kim
Dal Ho Lee
Sang Joon Park
Nanocrystalline Cellulose Supported MnO<sub>2</sub> Composite Materials for High-Performance Lithium-Ion Batteries
description The rate capability and poor cycling stability of lithium-ion batteries (LIBs) are predominantly caused by the large volume expansion upon cycling and poor electrical conductivity of manganese dioxide (MnO<sub>2</sub>), which also exhibits the highest theoretical capacity among manganese oxides. In this study, a nanocomposite of nanosized MnO<sub>2</sub> and pyrolyzed nanocrystalline cellulose (CNC) was prepared with high electrical conductivity to enhance the electrochemical performance of LIBs. The nanocomposite electrode showed an initial discharge capacity of 1302 mAh g<sup>−1</sup> at 100 mA g<sup>−1</sup> and exhibited a high discharge capacity of 305 mAh g<sup>−1</sup> after 1000 cycles. Moreover, the MnO<sub>2</sub>-CNC nanocomposite delivered a good rate capability of up to 10 A g<sup>−1</sup> and accommodated the large volume change upon repeated cycling tests.
format article
author Quang Nhat Tran
Thuan Ngoc Vo
Il Tae Kim
Ji Hyeon Kim
Dal Ho Lee
Sang Joon Park
author_facet Quang Nhat Tran
Thuan Ngoc Vo
Il Tae Kim
Ji Hyeon Kim
Dal Ho Lee
Sang Joon Park
author_sort Quang Nhat Tran
title Nanocrystalline Cellulose Supported MnO<sub>2</sub> Composite Materials for High-Performance Lithium-Ion Batteries
title_short Nanocrystalline Cellulose Supported MnO<sub>2</sub> Composite Materials for High-Performance Lithium-Ion Batteries
title_full Nanocrystalline Cellulose Supported MnO<sub>2</sub> Composite Materials for High-Performance Lithium-Ion Batteries
title_fullStr Nanocrystalline Cellulose Supported MnO<sub>2</sub> Composite Materials for High-Performance Lithium-Ion Batteries
title_full_unstemmed Nanocrystalline Cellulose Supported MnO<sub>2</sub> Composite Materials for High-Performance Lithium-Ion Batteries
title_sort nanocrystalline cellulose supported mno<sub>2</sub> composite materials for high-performance lithium-ion batteries
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/0ea4141f39304c6ca357933d28b67274
work_keys_str_mv AT quangnhattran nanocrystallinecellulosesupportedmnosub2subcompositematerialsforhighperformancelithiumionbatteries
AT thuanngocvo nanocrystallinecellulosesupportedmnosub2subcompositematerialsforhighperformancelithiumionbatteries
AT iltaekim nanocrystallinecellulosesupportedmnosub2subcompositematerialsforhighperformancelithiumionbatteries
AT jihyeonkim nanocrystallinecellulosesupportedmnosub2subcompositematerialsforhighperformancelithiumionbatteries
AT dalholee nanocrystallinecellulosesupportedmnosub2subcompositematerialsforhighperformancelithiumionbatteries
AT sangjoonpark nanocrystallinecellulosesupportedmnosub2subcompositematerialsforhighperformancelithiumionbatteries
_version_ 1718431924664401920