UCHL1-HIF-1 axis-mediated antioxidant property of cancer cells as a therapeutic target for radiosensitization

Abstract Hypoxia-inducible factor 1 (HIF-1) has been recognized as an important mediator of the reprogramming of carbohydrate metabolic pathways from oxidative phosphorylation to accelerated glycolysis. Although this reprogramming has been associated with the antioxidant and radioresistant propertie...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ryota Nakashima, Yoko Goto, Sho Koyasu, Minoru Kobayashi, Akiyo Morinibu, Michio Yoshimura, Masahiro Hiraoka, Ester M. Hammond, Hiroshi Harada
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/0eb813fe8b2c4d88992eb98d2a5ae043
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0eb813fe8b2c4d88992eb98d2a5ae043
record_format dspace
spelling oai:doaj.org-article:0eb813fe8b2c4d88992eb98d2a5ae0432021-12-02T12:30:13ZUCHL1-HIF-1 axis-mediated antioxidant property of cancer cells as a therapeutic target for radiosensitization10.1038/s41598-017-06605-12045-2322https://doaj.org/article/0eb813fe8b2c4d88992eb98d2a5ae0432017-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-06605-1https://doaj.org/toc/2045-2322Abstract Hypoxia-inducible factor 1 (HIF-1) has been recognized as an important mediator of the reprogramming of carbohydrate metabolic pathways from oxidative phosphorylation to accelerated glycolysis. Although this reprogramming has been associated with the antioxidant and radioresistant properties of cancer cells, gene networks triggering the HIF-1-mediated reprogramming and molecular mechanisms linking the reprogramming with radioresistance remain to be determined. Here, we show that Ubiquitin C-terminal hydrolase-L1 (UCHL1), which we previously identified as a novel HIF-1 activator, increased the radioresistance of cancer cells by producing an antioxidant, reduced glutathione (GSH), through HIF-1-mediated metabolic reprogramming. A luciferase assay to monitor HIF-1 activity demonstrated that the overexpression of UCHL1, but not its deubiquitination activity-deficient mutant (UCHL1 C90S), upregulated HIF-1 activity by stabilizing the regulatory subunit of HIF-1 (HIF-1α) in a murine breast cancer cell line, EMT6. UCHL1 overexpression induced the reprogramming of carbohydrate metabolism and increased NADPH levels in a pentose phosphate pathway (PPP)-dependent manner. The UCHL1-mediated reprogramming elevated intracellular GSH levels, and consequently induced a radioresistant phenotype in a HIF-1-dependent manner. The pharmacological inhibition of PPP canceled the UCHL1-mediated radioresistance. These results collectively suggest that cancer cells acquire antioxidant and radioresistant phenotypes through UCHL1-HIF-1-mediated metabolic reprogramming including the activation of PPP and provide a rational basis for targeting this gene network for radiosensitization.Ryota NakashimaYoko GotoSho KoyasuMinoru KobayashiAkiyo MorinibuMichio YoshimuraMasahiro HiraokaEster M. HammondHiroshi HaradaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-9 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Ryota Nakashima
Yoko Goto
Sho Koyasu
Minoru Kobayashi
Akiyo Morinibu
Michio Yoshimura
Masahiro Hiraoka
Ester M. Hammond
Hiroshi Harada
UCHL1-HIF-1 axis-mediated antioxidant property of cancer cells as a therapeutic target for radiosensitization
description Abstract Hypoxia-inducible factor 1 (HIF-1) has been recognized as an important mediator of the reprogramming of carbohydrate metabolic pathways from oxidative phosphorylation to accelerated glycolysis. Although this reprogramming has been associated with the antioxidant and radioresistant properties of cancer cells, gene networks triggering the HIF-1-mediated reprogramming and molecular mechanisms linking the reprogramming with radioresistance remain to be determined. Here, we show that Ubiquitin C-terminal hydrolase-L1 (UCHL1), which we previously identified as a novel HIF-1 activator, increased the radioresistance of cancer cells by producing an antioxidant, reduced glutathione (GSH), through HIF-1-mediated metabolic reprogramming. A luciferase assay to monitor HIF-1 activity demonstrated that the overexpression of UCHL1, but not its deubiquitination activity-deficient mutant (UCHL1 C90S), upregulated HIF-1 activity by stabilizing the regulatory subunit of HIF-1 (HIF-1α) in a murine breast cancer cell line, EMT6. UCHL1 overexpression induced the reprogramming of carbohydrate metabolism and increased NADPH levels in a pentose phosphate pathway (PPP)-dependent manner. The UCHL1-mediated reprogramming elevated intracellular GSH levels, and consequently induced a radioresistant phenotype in a HIF-1-dependent manner. The pharmacological inhibition of PPP canceled the UCHL1-mediated radioresistance. These results collectively suggest that cancer cells acquire antioxidant and radioresistant phenotypes through UCHL1-HIF-1-mediated metabolic reprogramming including the activation of PPP and provide a rational basis for targeting this gene network for radiosensitization.
format article
author Ryota Nakashima
Yoko Goto
Sho Koyasu
Minoru Kobayashi
Akiyo Morinibu
Michio Yoshimura
Masahiro Hiraoka
Ester M. Hammond
Hiroshi Harada
author_facet Ryota Nakashima
Yoko Goto
Sho Koyasu
Minoru Kobayashi
Akiyo Morinibu
Michio Yoshimura
Masahiro Hiraoka
Ester M. Hammond
Hiroshi Harada
author_sort Ryota Nakashima
title UCHL1-HIF-1 axis-mediated antioxidant property of cancer cells as a therapeutic target for radiosensitization
title_short UCHL1-HIF-1 axis-mediated antioxidant property of cancer cells as a therapeutic target for radiosensitization
title_full UCHL1-HIF-1 axis-mediated antioxidant property of cancer cells as a therapeutic target for radiosensitization
title_fullStr UCHL1-HIF-1 axis-mediated antioxidant property of cancer cells as a therapeutic target for radiosensitization
title_full_unstemmed UCHL1-HIF-1 axis-mediated antioxidant property of cancer cells as a therapeutic target for radiosensitization
title_sort uchl1-hif-1 axis-mediated antioxidant property of cancer cells as a therapeutic target for radiosensitization
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/0eb813fe8b2c4d88992eb98d2a5ae043
work_keys_str_mv AT ryotanakashima uchl1hif1axismediatedantioxidantpropertyofcancercellsasatherapeutictargetforradiosensitization
AT yokogoto uchl1hif1axismediatedantioxidantpropertyofcancercellsasatherapeutictargetforradiosensitization
AT shokoyasu uchl1hif1axismediatedantioxidantpropertyofcancercellsasatherapeutictargetforradiosensitization
AT minorukobayashi uchl1hif1axismediatedantioxidantpropertyofcancercellsasatherapeutictargetforradiosensitization
AT akiyomorinibu uchl1hif1axismediatedantioxidantpropertyofcancercellsasatherapeutictargetforradiosensitization
AT michioyoshimura uchl1hif1axismediatedantioxidantpropertyofcancercellsasatherapeutictargetforradiosensitization
AT masahirohiraoka uchl1hif1axismediatedantioxidantpropertyofcancercellsasatherapeutictargetforradiosensitization
AT estermhammond uchl1hif1axismediatedantioxidantpropertyofcancercellsasatherapeutictargetforradiosensitization
AT hiroshiharada uchl1hif1axismediatedantioxidantpropertyofcancercellsasatherapeutictargetforradiosensitization
_version_ 1718394379194859520