The effect of electrode shape on Schottky barrier and electric field distribution of flexible ZnO photodiode

Abstract In this study, the effect of electrode shape difference on the height of the Schottky barrier and the electric field in flexible photodiodes (PDs) has been investigated. For this purpose, three different electrode designs were prepared on three flexible FR4 layers that were coated with Zinc...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Zahra Aminrayai Jezeh, Babak Efafi, Bijan Ghafary
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/0eca9171a3d340fca1fe611669cd2654
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0eca9171a3d340fca1fe611669cd2654
record_format dspace
spelling oai:doaj.org-article:0eca9171a3d340fca1fe611669cd26542021-12-02T14:53:49ZThe effect of electrode shape on Schottky barrier and electric field distribution of flexible ZnO photodiode10.1038/s41598-021-95203-32045-2322https://doaj.org/article/0eca9171a3d340fca1fe611669cd26542021-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-95203-3https://doaj.org/toc/2045-2322Abstract In this study, the effect of electrode shape difference on the height of the Schottky barrier and the electric field in flexible photodiodes (PDs) has been investigated. For this purpose, three different electrode designs were prepared on three flexible FR4 layers that were coated with Zinc Oxide (ZnO). The printing circuit board (PCB) method was used to create these copper electrodes. The asymmetry of the PD electrodes and the difference in the height of the Schottky barrier has led to the creation of self-powered PDs. The effect of the amount and shape of the distribution of internal electric fields generated in the PDs and its effect on the parameters of the PDs has been investigated with the help of simulations performed in COMSOL software. The photocurrent of the sample with circular and rectangular electrodes was equal to 470 µA in 15 V bias, which was twice as good as a sample with an interdigitated MSM structure. Also, this sample had the best response time among these three samples, which was equal to 440 ms.Zahra Aminrayai JezehBabak EfafiBijan GhafaryNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Zahra Aminrayai Jezeh
Babak Efafi
Bijan Ghafary
The effect of electrode shape on Schottky barrier and electric field distribution of flexible ZnO photodiode
description Abstract In this study, the effect of electrode shape difference on the height of the Schottky barrier and the electric field in flexible photodiodes (PDs) has been investigated. For this purpose, three different electrode designs were prepared on three flexible FR4 layers that were coated with Zinc Oxide (ZnO). The printing circuit board (PCB) method was used to create these copper electrodes. The asymmetry of the PD electrodes and the difference in the height of the Schottky barrier has led to the creation of self-powered PDs. The effect of the amount and shape of the distribution of internal electric fields generated in the PDs and its effect on the parameters of the PDs has been investigated with the help of simulations performed in COMSOL software. The photocurrent of the sample with circular and rectangular electrodes was equal to 470 µA in 15 V bias, which was twice as good as a sample with an interdigitated MSM structure. Also, this sample had the best response time among these three samples, which was equal to 440 ms.
format article
author Zahra Aminrayai Jezeh
Babak Efafi
Bijan Ghafary
author_facet Zahra Aminrayai Jezeh
Babak Efafi
Bijan Ghafary
author_sort Zahra Aminrayai Jezeh
title The effect of electrode shape on Schottky barrier and electric field distribution of flexible ZnO photodiode
title_short The effect of electrode shape on Schottky barrier and electric field distribution of flexible ZnO photodiode
title_full The effect of electrode shape on Schottky barrier and electric field distribution of flexible ZnO photodiode
title_fullStr The effect of electrode shape on Schottky barrier and electric field distribution of flexible ZnO photodiode
title_full_unstemmed The effect of electrode shape on Schottky barrier and electric field distribution of flexible ZnO photodiode
title_sort effect of electrode shape on schottky barrier and electric field distribution of flexible zno photodiode
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/0eca9171a3d340fca1fe611669cd2654
work_keys_str_mv AT zahraaminrayaijezeh theeffectofelectrodeshapeonschottkybarrierandelectricfielddistributionofflexibleznophotodiode
AT babakefafi theeffectofelectrodeshapeonschottkybarrierandelectricfielddistributionofflexibleznophotodiode
AT bijanghafary theeffectofelectrodeshapeonschottkybarrierandelectricfielddistributionofflexibleznophotodiode
AT zahraaminrayaijezeh effectofelectrodeshapeonschottkybarrierandelectricfielddistributionofflexibleznophotodiode
AT babakefafi effectofelectrodeshapeonschottkybarrierandelectricfielddistributionofflexibleznophotodiode
AT bijanghafary effectofelectrodeshapeonschottkybarrierandelectricfielddistributionofflexibleznophotodiode
_version_ 1718389366184738816