Speeding up quantum perceptron via shortcuts to adiabaticity
Abstract The quantum perceptron is a fundamental building block for quantum machine learning. This is a multidisciplinary field that incorporates abilities of quantum computing, such as state superposition and entanglement, to classical machine learning schemes. Motivated by the techniques of shortc...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0ecaac1ce61f47d596d8f95e67e6c3da |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:0ecaac1ce61f47d596d8f95e67e6c3da |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:0ecaac1ce61f47d596d8f95e67e6c3da2021-12-02T11:35:58ZSpeeding up quantum perceptron via shortcuts to adiabaticity10.1038/s41598-021-85208-32045-2322https://doaj.org/article/0ecaac1ce61f47d596d8f95e67e6c3da2021-03-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-85208-3https://doaj.org/toc/2045-2322Abstract The quantum perceptron is a fundamental building block for quantum machine learning. This is a multidisciplinary field that incorporates abilities of quantum computing, such as state superposition and entanglement, to classical machine learning schemes. Motivated by the techniques of shortcuts to adiabaticity, we propose a speed-up quantum perceptron where a control field on the perceptron is inversely engineered leading to a rapid nonlinear response with a sigmoid activation function. This results in faster overall perceptron performance compared to quasi-adiabatic protocols, as well as in enhanced robustness against imperfections in the controls.Yue BanXi ChenE. TorronteguiE. SolanoJ. CasanovaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-8 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Yue Ban Xi Chen E. Torrontegui E. Solano J. Casanova Speeding up quantum perceptron via shortcuts to adiabaticity |
description |
Abstract The quantum perceptron is a fundamental building block for quantum machine learning. This is a multidisciplinary field that incorporates abilities of quantum computing, such as state superposition and entanglement, to classical machine learning schemes. Motivated by the techniques of shortcuts to adiabaticity, we propose a speed-up quantum perceptron where a control field on the perceptron is inversely engineered leading to a rapid nonlinear response with a sigmoid activation function. This results in faster overall perceptron performance compared to quasi-adiabatic protocols, as well as in enhanced robustness against imperfections in the controls. |
format |
article |
author |
Yue Ban Xi Chen E. Torrontegui E. Solano J. Casanova |
author_facet |
Yue Ban Xi Chen E. Torrontegui E. Solano J. Casanova |
author_sort |
Yue Ban |
title |
Speeding up quantum perceptron via shortcuts to adiabaticity |
title_short |
Speeding up quantum perceptron via shortcuts to adiabaticity |
title_full |
Speeding up quantum perceptron via shortcuts to adiabaticity |
title_fullStr |
Speeding up quantum perceptron via shortcuts to adiabaticity |
title_full_unstemmed |
Speeding up quantum perceptron via shortcuts to adiabaticity |
title_sort |
speeding up quantum perceptron via shortcuts to adiabaticity |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/0ecaac1ce61f47d596d8f95e67e6c3da |
work_keys_str_mv |
AT yueban speedingupquantumperceptronviashortcutstoadiabaticity AT xichen speedingupquantumperceptronviashortcutstoadiabaticity AT etorrontegui speedingupquantumperceptronviashortcutstoadiabaticity AT esolano speedingupquantumperceptronviashortcutstoadiabaticity AT jcasanova speedingupquantumperceptronviashortcutstoadiabaticity |
_version_ |
1718395803371831296 |