Speeding up quantum perceptron via shortcuts to adiabaticity

Abstract The quantum perceptron is a fundamental building block for quantum machine learning. This is a multidisciplinary field that incorporates abilities of quantum computing, such as state superposition and entanglement, to classical machine learning schemes. Motivated by the techniques of shortc...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yue Ban, Xi Chen, E. Torrontegui, E. Solano, J. Casanova
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/0ecaac1ce61f47d596d8f95e67e6c3da
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0ecaac1ce61f47d596d8f95e67e6c3da
record_format dspace
spelling oai:doaj.org-article:0ecaac1ce61f47d596d8f95e67e6c3da2021-12-02T11:35:58ZSpeeding up quantum perceptron via shortcuts to adiabaticity10.1038/s41598-021-85208-32045-2322https://doaj.org/article/0ecaac1ce61f47d596d8f95e67e6c3da2021-03-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-85208-3https://doaj.org/toc/2045-2322Abstract The quantum perceptron is a fundamental building block for quantum machine learning. This is a multidisciplinary field that incorporates abilities of quantum computing, such as state superposition and entanglement, to classical machine learning schemes. Motivated by the techniques of shortcuts to adiabaticity, we propose a speed-up quantum perceptron where a control field on the perceptron is inversely engineered leading to a rapid nonlinear response with a sigmoid activation function. This results in faster overall perceptron performance compared to quasi-adiabatic protocols, as well as in enhanced robustness against imperfections in the controls.Yue BanXi ChenE. TorronteguiE. SolanoJ. CasanovaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-8 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Yue Ban
Xi Chen
E. Torrontegui
E. Solano
J. Casanova
Speeding up quantum perceptron via shortcuts to adiabaticity
description Abstract The quantum perceptron is a fundamental building block for quantum machine learning. This is a multidisciplinary field that incorporates abilities of quantum computing, such as state superposition and entanglement, to classical machine learning schemes. Motivated by the techniques of shortcuts to adiabaticity, we propose a speed-up quantum perceptron where a control field on the perceptron is inversely engineered leading to a rapid nonlinear response with a sigmoid activation function. This results in faster overall perceptron performance compared to quasi-adiabatic protocols, as well as in enhanced robustness against imperfections in the controls.
format article
author Yue Ban
Xi Chen
E. Torrontegui
E. Solano
J. Casanova
author_facet Yue Ban
Xi Chen
E. Torrontegui
E. Solano
J. Casanova
author_sort Yue Ban
title Speeding up quantum perceptron via shortcuts to adiabaticity
title_short Speeding up quantum perceptron via shortcuts to adiabaticity
title_full Speeding up quantum perceptron via shortcuts to adiabaticity
title_fullStr Speeding up quantum perceptron via shortcuts to adiabaticity
title_full_unstemmed Speeding up quantum perceptron via shortcuts to adiabaticity
title_sort speeding up quantum perceptron via shortcuts to adiabaticity
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/0ecaac1ce61f47d596d8f95e67e6c3da
work_keys_str_mv AT yueban speedingupquantumperceptronviashortcutstoadiabaticity
AT xichen speedingupquantumperceptronviashortcutstoadiabaticity
AT etorrontegui speedingupquantumperceptronviashortcutstoadiabaticity
AT esolano speedingupquantumperceptronviashortcutstoadiabaticity
AT jcasanova speedingupquantumperceptronviashortcutstoadiabaticity
_version_ 1718395803371831296