Eventually Periodic Points of Infra-Nil Endomorphisms
<p/> <p>Hyperbolic toral automorphisms provide important examples of chaotic dynamical systems. Generalizing automorphisms on tori, we study (infra-)nil endomorphisms defined on (infra-)nilmanifolds. In particular, we show that every infra-nil endomorphism has dense eventually periodic p...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SpringerOpen
2010
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0ee398eec45e4a0cae5fb14d14342192 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:0ee398eec45e4a0cae5fb14d14342192 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:0ee398eec45e4a0cae5fb14d143421922021-12-02T12:21:13ZEventually Periodic Points of Infra-Nil Endomorphisms1687-18201687-1812https://doaj.org/article/0ee398eec45e4a0cae5fb14d143421922010-01-01T00:00:00Zhttp://www.fixedpointtheoryandapplications.com/content/2010/721736https://doaj.org/toc/1687-1820https://doaj.org/toc/1687-1812<p/> <p>Hyperbolic toral automorphisms provide important examples of chaotic dynamical systems. Generalizing automorphisms on tori, we study (infra-)nil endomorphisms defined on (infra-)nilmanifolds. In particular, we show that every infra-nil endomorphism has dense eventually periodic points.</p>Ha KuYongKim HyunJungLee JongBumSpringerOpenarticleApplied mathematics. Quantitative methodsT57-57.97AnalysisQA299.6-433ENFixed Point Theory and Applications, Vol 2010, Iss 1, p 721736 (2010) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Applied mathematics. Quantitative methods T57-57.97 Analysis QA299.6-433 |
spellingShingle |
Applied mathematics. Quantitative methods T57-57.97 Analysis QA299.6-433 Ha KuYong Kim HyunJung Lee JongBum Eventually Periodic Points of Infra-Nil Endomorphisms |
description |
<p/> <p>Hyperbolic toral automorphisms provide important examples of chaotic dynamical systems. Generalizing automorphisms on tori, we study (infra-)nil endomorphisms defined on (infra-)nilmanifolds. In particular, we show that every infra-nil endomorphism has dense eventually periodic points.</p> |
format |
article |
author |
Ha KuYong Kim HyunJung Lee JongBum |
author_facet |
Ha KuYong Kim HyunJung Lee JongBum |
author_sort |
Ha KuYong |
title |
Eventually Periodic Points of Infra-Nil Endomorphisms |
title_short |
Eventually Periodic Points of Infra-Nil Endomorphisms |
title_full |
Eventually Periodic Points of Infra-Nil Endomorphisms |
title_fullStr |
Eventually Periodic Points of Infra-Nil Endomorphisms |
title_full_unstemmed |
Eventually Periodic Points of Infra-Nil Endomorphisms |
title_sort |
eventually periodic points of infra-nil endomorphisms |
publisher |
SpringerOpen |
publishDate |
2010 |
url |
https://doaj.org/article/0ee398eec45e4a0cae5fb14d14342192 |
work_keys_str_mv |
AT hakuyong eventuallyperiodicpointsofinfranilendomorphisms AT kimhyunjung eventuallyperiodicpointsofinfranilendomorphisms AT leejongbum eventuallyperiodicpointsofinfranilendomorphisms |
_version_ |
1718394498064580608 |