Eventually Periodic Points of Infra-Nil Endomorphisms

<p/> <p>Hyperbolic toral automorphisms provide important examples of chaotic dynamical systems. Generalizing automorphisms on tori, we study (infra-)nil endomorphisms defined on (infra-)nilmanifolds. In particular, we show that every infra-nil endomorphism has dense eventually periodic p...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ha KuYong, Kim HyunJung, Lee JongBum
Formato: article
Lenguaje:EN
Publicado: SpringerOpen 2010
Materias:
Acceso en línea:https://doaj.org/article/0ee398eec45e4a0cae5fb14d14342192
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0ee398eec45e4a0cae5fb14d14342192
record_format dspace
spelling oai:doaj.org-article:0ee398eec45e4a0cae5fb14d143421922021-12-02T12:21:13ZEventually Periodic Points of Infra-Nil Endomorphisms1687-18201687-1812https://doaj.org/article/0ee398eec45e4a0cae5fb14d143421922010-01-01T00:00:00Zhttp://www.fixedpointtheoryandapplications.com/content/2010/721736https://doaj.org/toc/1687-1820https://doaj.org/toc/1687-1812<p/> <p>Hyperbolic toral automorphisms provide important examples of chaotic dynamical systems. Generalizing automorphisms on tori, we study (infra-)nil endomorphisms defined on (infra-)nilmanifolds. In particular, we show that every infra-nil endomorphism has dense eventually periodic points.</p>Ha KuYongKim HyunJungLee JongBumSpringerOpenarticleApplied mathematics. Quantitative methodsT57-57.97AnalysisQA299.6-433ENFixed Point Theory and Applications, Vol 2010, Iss 1, p 721736 (2010)
institution DOAJ
collection DOAJ
language EN
topic Applied mathematics. Quantitative methods
T57-57.97
Analysis
QA299.6-433
spellingShingle Applied mathematics. Quantitative methods
T57-57.97
Analysis
QA299.6-433
Ha KuYong
Kim HyunJung
Lee JongBum
Eventually Periodic Points of Infra-Nil Endomorphisms
description <p/> <p>Hyperbolic toral automorphisms provide important examples of chaotic dynamical systems. Generalizing automorphisms on tori, we study (infra-)nil endomorphisms defined on (infra-)nilmanifolds. In particular, we show that every infra-nil endomorphism has dense eventually periodic points.</p>
format article
author Ha KuYong
Kim HyunJung
Lee JongBum
author_facet Ha KuYong
Kim HyunJung
Lee JongBum
author_sort Ha KuYong
title Eventually Periodic Points of Infra-Nil Endomorphisms
title_short Eventually Periodic Points of Infra-Nil Endomorphisms
title_full Eventually Periodic Points of Infra-Nil Endomorphisms
title_fullStr Eventually Periodic Points of Infra-Nil Endomorphisms
title_full_unstemmed Eventually Periodic Points of Infra-Nil Endomorphisms
title_sort eventually periodic points of infra-nil endomorphisms
publisher SpringerOpen
publishDate 2010
url https://doaj.org/article/0ee398eec45e4a0cae5fb14d14342192
work_keys_str_mv AT hakuyong eventuallyperiodicpointsofinfranilendomorphisms
AT kimhyunjung eventuallyperiodicpointsofinfranilendomorphisms
AT leejongbum eventuallyperiodicpointsofinfranilendomorphisms
_version_ 1718394498064580608