Controlled-release and preserved bioactivity of proteins from (self-assembled) core-shell double-walled microspheres

Weien Yuan1,2, Zhenguo Liu11Department of Neurology, Xinhua Hospital, affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 2School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People’s Republic of ChinaAbstract: In order to address preserved protein bioact...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yuan W, Liu Z
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2012
Materias:
Acceso en línea:https://doaj.org/article/0efa5a9ded894a059148e2863853fe92
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Weien Yuan1,2, Zhenguo Liu11Department of Neurology, Xinhua Hospital, affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 2School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People’s Republic of ChinaAbstract: In order to address preserved protein bioactivities and protein sustained-release problems, a method for preparing double-walled microspheres with a core (protein-loaded nanoparticles with a polymer-suspended granule system-formed core) and a second shell (a polymer-formed shell) for controlled drug release and preserved protein bioactivities has been developed using (solid-in-oil phase-in-hydrophilic oil-in-water (S/O/Oh/W)) phases. The method, based on our previous microsphere preparation method (solid-in-oil phase-in-hydrophilic oil-in-water (S/O/Oh/W), employs different concentric poly(D,L-lactide-co-glycolide), poly(D,L-lactide), and protein-loaded nanoparticles to produce a suspended liquid which then self-assembles to form shell-core microspheres in the hydrophilic oil phase, which are then solidified in the water phase. Variations in the preparation parameters allowed complete encapsulation by the shell phase, including the efficient formation of a poly(D,L-lactide) shell encapsulating a protein-loaded nanoparticle-based poly(D,L-lactide-co-glycolide) core. This method produces core-shell double-walled microspheres that show controlled protein release and preserved protein bioactivities for 60 days. Based upon these results, we concluded that the core-shell double-walled microspheres might be applied for tissue engineering and therapy for chronic diseases, etc.Keywords: protein delivery, protein stability, core-shell microspheres, dextran nanoparticles