Complex Lagrangians in a hyperKähler manifold and the relative Albanese

Let M be the moduli space of complex Lagrangian submanifolds of a hyperKähler manifold X, and let ω̄ : 𝒜̂ → M be the relative Albanese over M. We prove that 𝒜̂ has a natural holomorphic symplectic structure. The projection ω̄ defines a completely integrable structure on the symplectic manifold 𝒜̂. I...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Biswas Indranil, Gómez Tomás L., Oliveira André
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2020
Materias:
Acceso en línea:https://doaj.org/article/0efd9615d33a4299bd832d377f1e7691
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Let M be the moduli space of complex Lagrangian submanifolds of a hyperKähler manifold X, and let ω̄ : 𝒜̂ → M be the relative Albanese over M. We prove that 𝒜̂ has a natural holomorphic symplectic structure. The projection ω̄ defines a completely integrable structure on the symplectic manifold 𝒜̂. In particular, the fibers of ω̄ are complex Lagrangians with respect to the symplectic form on 𝒜̂. We also prove analogous results for the relative Picard over M.