Complex Lagrangians in a hyperKähler manifold and the relative Albanese
Let M be the moduli space of complex Lagrangian submanifolds of a hyperKähler manifold X, and let ω̄ : 𝒜̂ → M be the relative Albanese over M. We prove that 𝒜̂ has a natural holomorphic symplectic structure. The projection ω̄ defines a completely integrable structure on the symplectic manifold 𝒜̂. I...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0efd9615d33a4299bd832d377f1e7691 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:0efd9615d33a4299bd832d377f1e7691 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:0efd9615d33a4299bd832d377f1e76912021-12-02T11:56:24ZComplex Lagrangians in a hyperKähler manifold and the relative Albanese2300-744310.1515/coma-2020-0106https://doaj.org/article/0efd9615d33a4299bd832d377f1e76912020-10-01T00:00:00Zhttp://www.degruyter.com/view/j/coma.2020.7.issue-1/coma-2020-0106/coma-2020-0106.xml?format=INThttps://doaj.org/toc/2300-7443Let M be the moduli space of complex Lagrangian submanifolds of a hyperKähler manifold X, and let ω̄ : 𝒜̂ → M be the relative Albanese over M. We prove that 𝒜̂ has a natural holomorphic symplectic structure. The projection ω̄ defines a completely integrable structure on the symplectic manifold 𝒜̂. In particular, the fibers of ω̄ are complex Lagrangians with respect to the symplectic form on 𝒜̂. We also prove analogous results for the relative Picard over M.Biswas IndranilGómez Tomás L.Oliveira AndréDe Gruyterarticlehyperkähler manifoldcomplex lagrangianintegrable systemliouville formalbanese14j4253d1237k1014d21MathematicsQA1-939ENComplex Manifolds, Vol 7, Iss 1, Pp 230-240 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
hyperkähler manifold complex lagrangian integrable system liouville form albanese 14j42 53d12 37k10 14d21 Mathematics QA1-939 |
spellingShingle |
hyperkähler manifold complex lagrangian integrable system liouville form albanese 14j42 53d12 37k10 14d21 Mathematics QA1-939 Biswas Indranil Gómez Tomás L. Oliveira André Complex Lagrangians in a hyperKähler manifold and the relative Albanese |
description |
Let M be the moduli space of complex Lagrangian submanifolds of a hyperKähler manifold X, and let ω̄ : 𝒜̂ → M be the relative Albanese over M. We prove that 𝒜̂ has a natural holomorphic symplectic structure. The projection ω̄ defines a completely integrable structure on the symplectic manifold 𝒜̂. In particular, the fibers of ω̄ are complex Lagrangians with respect to the symplectic form on 𝒜̂. We also prove analogous results for the relative Picard over M. |
format |
article |
author |
Biswas Indranil Gómez Tomás L. Oliveira André |
author_facet |
Biswas Indranil Gómez Tomás L. Oliveira André |
author_sort |
Biswas Indranil |
title |
Complex Lagrangians in a hyperKähler manifold and the relative Albanese |
title_short |
Complex Lagrangians in a hyperKähler manifold and the relative Albanese |
title_full |
Complex Lagrangians in a hyperKähler manifold and the relative Albanese |
title_fullStr |
Complex Lagrangians in a hyperKähler manifold and the relative Albanese |
title_full_unstemmed |
Complex Lagrangians in a hyperKähler manifold and the relative Albanese |
title_sort |
complex lagrangians in a hyperkähler manifold and the relative albanese |
publisher |
De Gruyter |
publishDate |
2020 |
url |
https://doaj.org/article/0efd9615d33a4299bd832d377f1e7691 |
work_keys_str_mv |
AT biswasindranil complexlagrangiansinahyperkahlermanifoldandtherelativealbanese AT gomeztomasl complexlagrangiansinahyperkahlermanifoldandtherelativealbanese AT oliveiraandre complexlagrangiansinahyperkahlermanifoldandtherelativealbanese |
_version_ |
1718394789922078720 |