Complex Lagrangians in a hyperKähler manifold and the relative Albanese

Let M be the moduli space of complex Lagrangian submanifolds of a hyperKähler manifold X, and let ω̄ : 𝒜̂ → M be the relative Albanese over M. We prove that 𝒜̂ has a natural holomorphic symplectic structure. The projection ω̄ defines a completely integrable structure on the symplectic manifold 𝒜̂. I...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Biswas Indranil, Gómez Tomás L., Oliveira André
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2020
Materias:
Acceso en línea:https://doaj.org/article/0efd9615d33a4299bd832d377f1e7691
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0efd9615d33a4299bd832d377f1e7691
record_format dspace
spelling oai:doaj.org-article:0efd9615d33a4299bd832d377f1e76912021-12-02T11:56:24ZComplex Lagrangians in a hyperKähler manifold and the relative Albanese2300-744310.1515/coma-2020-0106https://doaj.org/article/0efd9615d33a4299bd832d377f1e76912020-10-01T00:00:00Zhttp://www.degruyter.com/view/j/coma.2020.7.issue-1/coma-2020-0106/coma-2020-0106.xml?format=INThttps://doaj.org/toc/2300-7443Let M be the moduli space of complex Lagrangian submanifolds of a hyperKähler manifold X, and let ω̄ : 𝒜̂ → M be the relative Albanese over M. We prove that 𝒜̂ has a natural holomorphic symplectic structure. The projection ω̄ defines a completely integrable structure on the symplectic manifold 𝒜̂. In particular, the fibers of ω̄ are complex Lagrangians with respect to the symplectic form on 𝒜̂. We also prove analogous results for the relative Picard over M.Biswas IndranilGómez Tomás L.Oliveira AndréDe Gruyterarticlehyperkähler manifoldcomplex lagrangianintegrable systemliouville formalbanese14j4253d1237k1014d21MathematicsQA1-939ENComplex Manifolds, Vol 7, Iss 1, Pp 230-240 (2020)
institution DOAJ
collection DOAJ
language EN
topic hyperkähler manifold
complex lagrangian
integrable system
liouville form
albanese
14j42
53d12
37k10
14d21
Mathematics
QA1-939
spellingShingle hyperkähler manifold
complex lagrangian
integrable system
liouville form
albanese
14j42
53d12
37k10
14d21
Mathematics
QA1-939
Biswas Indranil
Gómez Tomás L.
Oliveira André
Complex Lagrangians in a hyperKähler manifold and the relative Albanese
description Let M be the moduli space of complex Lagrangian submanifolds of a hyperKähler manifold X, and let ω̄ : 𝒜̂ → M be the relative Albanese over M. We prove that 𝒜̂ has a natural holomorphic symplectic structure. The projection ω̄ defines a completely integrable structure on the symplectic manifold 𝒜̂. In particular, the fibers of ω̄ are complex Lagrangians with respect to the symplectic form on 𝒜̂. We also prove analogous results for the relative Picard over M.
format article
author Biswas Indranil
Gómez Tomás L.
Oliveira André
author_facet Biswas Indranil
Gómez Tomás L.
Oliveira André
author_sort Biswas Indranil
title Complex Lagrangians in a hyperKähler manifold and the relative Albanese
title_short Complex Lagrangians in a hyperKähler manifold and the relative Albanese
title_full Complex Lagrangians in a hyperKähler manifold and the relative Albanese
title_fullStr Complex Lagrangians in a hyperKähler manifold and the relative Albanese
title_full_unstemmed Complex Lagrangians in a hyperKähler manifold and the relative Albanese
title_sort complex lagrangians in a hyperkähler manifold and the relative albanese
publisher De Gruyter
publishDate 2020
url https://doaj.org/article/0efd9615d33a4299bd832d377f1e7691
work_keys_str_mv AT biswasindranil complexlagrangiansinahyperkahlermanifoldandtherelativealbanese
AT gomeztomasl complexlagrangiansinahyperkahlermanifoldandtherelativealbanese
AT oliveiraandre complexlagrangiansinahyperkahlermanifoldandtherelativealbanese
_version_ 1718394789922078720