Complex Lagrangians in a hyperKähler manifold and the relative Albanese
Let M be the moduli space of complex Lagrangian submanifolds of a hyperKähler manifold X, and let ω̄ : 𝒜̂ → M be the relative Albanese over M. We prove that 𝒜̂ has a natural holomorphic symplectic structure. The projection ω̄ defines a completely integrable structure on the symplectic manifold 𝒜̂. I...
Guardado en:
Autores principales: | Biswas Indranil, Gómez Tomás L., Oliveira André |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0efd9615d33a4299bd832d377f1e7691 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Lagrangian geometry of the Gauss images of isoparametric hypersurfaces in spheres
por: Miyaoka Reiko, et al.
Publicado: (2019) -
Contact manifolds, Lagrangian Grassmannians and PDEs
por: Eshkobilov Olimjon, et al.
Publicado: (2018) -
Differential operators on almost-Hermitian manifolds and harmonic forms
por: Tardini Nicoletta, et al.
Publicado: (2020) -
Minimal Maslov number of R-spaces canonically embedded in Einstein-Kähler C-spaces
por: Ohnita Yoshihiro
Publicado: (2019) -
Toric extremal Kähler-Ricci solitons are Kähler-Einstein
por: Calamai Simone, et al.
Publicado: (2017)