A Note on the Boundedness of Doob Maximal Operators on a Filtered Measure Space
Let <i>M</i> be the Doob maximal operator on a filtered measure space and let <i>v</i> be an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>A</mi><mi>p</mi...
Guardado en:
Autores principales: | Wei Chen, Jingya Cui |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0f1400cc7d4b42d583ed52d030becab4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
ON OPERATOR IDEALS DEFINED BY A REFLEXIVE ORLICZ SEQUENCE SPACE
por: LÓPEZ,J, et al.
Publicado: (2006) -
Maximal functions and properties of the weighted composition operators acting on the Korenblum, α-Bloch and α-Zygmund spaces
por: Antón Marval,Gabriel M, et al.
Publicado: (2017) -
Boundedness of vector-valued sublinear operators on weighted Herz-Morrey spaces with variable exponents
por: Wang Shengrong, et al.
Publicado: (2021) -
A note on maximal operators related to Laplace-Bessel differential operators on variable exponent Lebesgue spaces
por: Kaya Esra
Publicado: (2021) -
Integral composition operators between weighted Bergman spaces and weighted Bloch type spaces
por: Wolf,Elke
Publicado: (2012)