DETECT: a MATLAB toolbox for event detection and identification in time series, with applications to artifact detection in EEG signals.
Recent advances in sensor and recording technology have allowed scientists to acquire very large time-series datasets. Researchers often analyze these datasets in the context of events, which are intervals of time where the properties of the signal change relative to a baseline signal. We have devel...
Guardado en:
Autores principales: | Vernon Lawhern, W David Hairston, Kay Robbins |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0f14a9067d7b4a639589b0d82c992d23 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Detection of Mental Stress through EEG Signal in Virtual Reality Environment
por: Dorota Kamińska, et al.
Publicado: (2021) -
Structural change detection in ordinal time series.
por: Fuxiao Li, et al.
Publicado: (2021) -
A scalable open-source MATLAB toolbox for reconstruction and analysis of multispectral optoacoustic tomography data
por: Devin O’Kelly, et al.
Publicado: (2021) -
MuTE: a MATLAB toolbox to compare established and novel estimators of the multivariate transfer entropy.
por: Alessandro Montalto, et al.
Publicado: (2014) -
Detecting Phase-Synchrony Connectivity Anomalies in EEG Signals. Application to Dyslexia Diagnosis
por: Marco A. Formoso, et al.
Publicado: (2021)