Hierarchical effects facilitate spreading processes on synthetic and empirical multilayer networks.
In this paper we consider the effects of corporate hierarchies on innovation spread across multilayer networks, modeled by an elaborated SIR framework. We show that the addition of management layers can significantly improve spreading processes on both random geometric graphs and empirical corporate...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0f1f6263e5de4819a88a9cc6259cbfe7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:0f1f6263e5de4819a88a9cc6259cbfe7 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:0f1f6263e5de4819a88a9cc6259cbfe72021-12-02T20:10:52ZHierarchical effects facilitate spreading processes on synthetic and empirical multilayer networks.1932-620310.1371/journal.pone.0252266https://doaj.org/article/0f1f6263e5de4819a88a9cc6259cbfe72021-01-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0252266https://doaj.org/toc/1932-6203In this paper we consider the effects of corporate hierarchies on innovation spread across multilayer networks, modeled by an elaborated SIR framework. We show that the addition of management layers can significantly improve spreading processes on both random geometric graphs and empirical corporate networks. Additionally, we show that utilizing a more centralized working relationship network rather than a strict administrative network further increases overall innovation reach. In fact, this more centralized structure in conjunction with management layers is essential to both reaching a plurality of nodes and creating a stable adopted community in the long time horizon. Further, we show that the selection of seed nodes affects the final stability of the adopted community, and while the most influential nodes often produce the highest peak adoption, this is not always the case. In some circumstances, seeding nodes near but not in the highest positions in the graph produces larger peak adoption and more stable long-time adoption.Casey DoyleThushara GundaAsmeret NauglePublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 16, Iss 6, p e0252266 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Casey Doyle Thushara Gunda Asmeret Naugle Hierarchical effects facilitate spreading processes on synthetic and empirical multilayer networks. |
description |
In this paper we consider the effects of corporate hierarchies on innovation spread across multilayer networks, modeled by an elaborated SIR framework. We show that the addition of management layers can significantly improve spreading processes on both random geometric graphs and empirical corporate networks. Additionally, we show that utilizing a more centralized working relationship network rather than a strict administrative network further increases overall innovation reach. In fact, this more centralized structure in conjunction with management layers is essential to both reaching a plurality of nodes and creating a stable adopted community in the long time horizon. Further, we show that the selection of seed nodes affects the final stability of the adopted community, and while the most influential nodes often produce the highest peak adoption, this is not always the case. In some circumstances, seeding nodes near but not in the highest positions in the graph produces larger peak adoption and more stable long-time adoption. |
format |
article |
author |
Casey Doyle Thushara Gunda Asmeret Naugle |
author_facet |
Casey Doyle Thushara Gunda Asmeret Naugle |
author_sort |
Casey Doyle |
title |
Hierarchical effects facilitate spreading processes on synthetic and empirical multilayer networks. |
title_short |
Hierarchical effects facilitate spreading processes on synthetic and empirical multilayer networks. |
title_full |
Hierarchical effects facilitate spreading processes on synthetic and empirical multilayer networks. |
title_fullStr |
Hierarchical effects facilitate spreading processes on synthetic and empirical multilayer networks. |
title_full_unstemmed |
Hierarchical effects facilitate spreading processes on synthetic and empirical multilayer networks. |
title_sort |
hierarchical effects facilitate spreading processes on synthetic and empirical multilayer networks. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2021 |
url |
https://doaj.org/article/0f1f6263e5de4819a88a9cc6259cbfe7 |
work_keys_str_mv |
AT caseydoyle hierarchicaleffectsfacilitatespreadingprocessesonsyntheticandempiricalmultilayernetworks AT thusharagunda hierarchicaleffectsfacilitatespreadingprocessesonsyntheticandempiricalmultilayernetworks AT asmeretnaugle hierarchicaleffectsfacilitatespreadingprocessesonsyntheticandempiricalmultilayernetworks |
_version_ |
1718374928120545280 |