A Resource Management Model for Distributed Multi-Task Applications in Fog Computing Networks
While the effectiveness of fog computing in Internet of Things (IoT) applications has been widely investigated in various studies, there is still a lack of techniques to efficiently utilize the computing resources in a fog platform to maximize Quality of Service (QoS) and Quality of Experience (QoE)...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0f252ff2db1a438eb308451a7bbb56d7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | While the effectiveness of fog computing in Internet of Things (IoT) applications has been widely investigated in various studies, there is still a lack of techniques to efficiently utilize the computing resources in a fog platform to maximize Quality of Service (QoS) and Quality of Experience (QoE). This paper presents a resource management model for service placement of distributed multitasking applications in fog computing through mathematical modeling of such a platform. Our main design goal is to reduce communication between the candidate nodes hosting different task modules of an application by selecting a group of nodes near each other and as close to the source of the data as possible. We propose a method based on a greedy principle that demonstrates a highly scalable and near-optimal performance for resource mapping problems for multitasking applications in fog computing networks. Compared with the commercial Gurobi optimizer, our proposed algorithm provides a mapping solution that obtains 93% of the performance, attributed to a higher communication cost, while outperforming the reference method in terms of the computing speed, cutting the mapping execution time to less than 1% of that of the Gurobi optimizer. |
---|