Approximate Mei Symmetries and Invariants of the Hamiltonian
It is known that corresponding to each Noether symmetry there is a conserved quantity. Another class of symmetries that corresponds to conserved quantities is the class of Mei symmetries. However, the two sets of symmetries may give different conserved quantities. In this paper, a procedure of findi...
Guardado en:
Autores principales: | Umara Kausar, Tooba Feroze |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0f2c20e89df94a0b9925d86b06925973 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Approximate Noether Symmetries of Perturbed Lagrangians and Approximate Conservation Laws
por: Matteo Gorgone, et al.
Publicado: (2021) -
Symmetry Preserving Discretization of the Hamiltonian Systems with Holonomic Constraints
por: Lili Xia, et al.
Publicado: (2021) -
Symmetry Solutions and Conservation Laws for the 3D Generalized Potential Yu-Toda-Sasa-Fukuyama Equation of Mathematical Physics
por: Chaudry Masood Khalique, et al.
Publicado: (2021) -
Conservative Finite-Difference Schemes for Two Nonlinear Schrödinger Equations Describing Frequency Tripling in a Medium with Cubic Nonlinearity: Competition of Invariants
por: Vyacheslav Trofimov, et al.
Publicado: (2021) -
Symmetry Analysis, Exact Solutions and Conservation Laws of a Benjamin–Bona–Mahony–Burgers Equation in 2+1-Dimensions
por: María S. Bruzón, et al.
Publicado: (2021)